با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

بخش شیمی، دانشکده علوم، دانشگاه یزد، یزد، ایران

چکیده

در این مطالعه، برای سنجش هیدرازین یک حسگر الکتروشیمیایی با استفاده از الکترود کربن شیشه-ای اصلاح شده برپایه اصلاحگر آلی 5-(3و4-دی‌هیدروکسی‌فنیل)-8و8-دی‌متیل-2-(متیل‌‌تیو)-7و8و9و10-تترا‌هیدرو‌پیریمیدو]4و5-[bکینولون-4و6(3H,5H)-دیون (PQ23) و نانو‌کامپوزیت آیروژل گرافن اکسید کاهش یافته آلاییده شده با نیتروژن/نانو میله‌های مولیبدن اکسید طراحی شد. برای بررسی ساختار وترکیب نانوذرات سنتزی از SEM، XRD، EDS و MAP استفاده شد.
الکترود اصلاح شده با طیف‌بینی امپدانس الکتروشیمیایی (EIS) مورد بررسی قرار گرفت و بهبود انتقال الکترون به دلیل رسانایی خوب نانوکامپوزیت تایید شد. با استفاده از ولتامتری چرخه‌ای اکسایش هیدرازین مورد بررسی قرار گرفت و کاهش اضافه پتانسیل و افزایش جریان در سطح الکترود اصلاح شده مشاهده و همچنین ضریب انتقال اصلاحگر برای اکسایش هیدرازین 5/0 محاسبه شد. با استفاده از ولتامتری تپی تفاضلی غلظت‌های مختلف از هیدرازین در سطح الکترود اصلاح شده بررسی و حد تشخیص μM 2/4 و گستره ‌خطیμM 103×0/1-0/25 برای روش پیشنهادی گزارش شد.

کلیدواژه‌ها

[1]J. Kavitha, M. Devendiran, K.K. Kumar, S.S. Narayanan, Electrochemical Sensor for the Determination of Hydrazine Using Mwcnt/Dopamine Dithiocarbamate Modified Electrode, Int. J. Sci. Res. Sci. Technol. 6 (2017) 227–232.
[2]M. Mazloum-ardakani, Z. Alizadeh, L. Hosseinzadeh, An Electrochemical Sensor Based on Functionalized Carbon Nanotube with Pyrazole Derivative for Determination of Hydrazine, IJAC, 6 (2019) 49-56
[3]D. Afzali, H. Karimi-Maleh, M.A. Khalilzadeh, Sensitive and selective determination of phenylhydrazine in the presence of hydrazine at a ferrocene-modified carbon nanotube paste electrode, Environ. Chem. Lett. 9 (2011) 375–381.
[4]S. Kurbanoglu, M.A. Unal, S.A. Ozkan, Recent developments on electrochemical flow injection in pharmaceuticals and biologically important compounds, Electrochim. Acta. 287 (2018) 135–148.
[5]K. Tašev, I. Karadjova, T. Stafilov, Determination of inorganic and total arsenic in wines by hydride generation atomic absorption spectrometry, Microchim. Acta. 149 (2005) 55–60.
[6]R. Gilbert, R. Rioux, Ion Chromatographic Determination, (1984) 106–109.
[7]D.S. Kosyakov, A.S. Amosov, N. V. Ul’yanovskii, A. V. Ladesov, Y.G. Khabarov, O.A. Shpigun, Spectrophotometric determination of hydrazine, methylhydrazine, and 1,1-dimethylhydrazine with preliminary derivatization by 5-nitro-2-furaldehyde, J. Anal. Chem. 72 (2017) 171–177.
[8]M.H. Nagaoka, H. Nagaoka, K. Kondo, H. Akiyama, T. Maitani, Measurement of a genotoxic hydrazine, agaritine, and its derivatives by HPLC with fluorescence derivatization in the agaricus mushroom and its products, Chem. Pharm. Bull. 54 (2006) 922–924.
[9]B. Fang, C. Zhang, W. Zhang, G. Wang, A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode, Electrochim. Acta. 55 (2009) 178–182.
[10]Y. Zhu, P. Chandra, Y.B. Shim, Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine-Au nanoparticle-aptamer bioconjugate, Anal. Chem. 85 (2013) 1058–1064.
[11]W. Zhao, X.Q. Wu, Z.Q. Lu, W.J. Hou, H.X. Li, Electrochemical studies of chloroperoxidase on poly-l-lysine film modified GC electrode, Chinese Chem. Lett. 21 (2010) 93–96.
[12]J.A. Oh, H.S. Shin, Simple determination of hydrazine in waste water by headspace solid-phase micro extraction and gas chromatography-tandem mass spectrometry after derivatization with trifluoro pentanedione, Anal. Chim. Acta. 950 (2017) 57–63.
[13]M. Mazloum-Ardakani, Z. Alizadeh, F. Sabaghian, B.B.F. Mirjalili, N. Salehi, Novel Fe2O3@CeO2 Coreshell-based Electrochemical Nanosensor for the Voltammetric Determination of Norepinephrine, Electroanalysis. 32 (2020) 455–461.
[14]J.J. Hernández Rosas, R.E. Ramírez Gutiérrez, A. Escobedo-Morales, E. Chigo Anota, First principles calculations of the electronic and chemical properties of graphene, graphane, and graphene oxide, J. Mol. Model. 17 (2011) 1133–1139.
[15]D.A.C. Brownson, G.C. Smith, C.E. Banks, Graphene oxide electrochemistry: The electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis, R. Soc. Open Sci. 4 (2017).
[16]R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, K. Maegawa, W.K. Tan, G. Kawamura, K.K. Kar, A. Matsuda, Heteroatom doped graphene engineering for energy storage and conversion, Mater. Today. 39 (2020) 47–65.
[17]J. Liu, Q. Ma, Z. Huang, G. Liu, H. Zhang, Recent Progress in Graphene-Based Noble-Metal Nanocomposites for Electrocatalytic Applications, Adv. Mater. 31 (2019) 1–20.
[18]W. Hua, H.H. Sun, F. Xu, J.G. Wang, A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction, Rare Met. 39 (2020) 335–351.
[19]H. Ren, S. Sun, J. Cui, X. Li, Synthesis, functional modifications, and diversified applications of molybdenum oxides micro-/nanocrystals: A review, Cryst. Growth Des. 18 (2018) 6326–6369.
[20]J. Xu, K. Xu, Y. Han, D. Wang, X. Li, T. Hu, H. Yi, Z. Ni, A 3D porous graphene aerogel@GOx based microfluidic biosensor for electrochemical glucose detection, Analyst. 145 (2020) 5141–5147.
[21]R. Li, T. Yang, Z. Li, Z. Gu, G. Wang, J. Liu, Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine, Anal. Chim. Acta. 954 (2017) 43–51.
[22]L. Ruiyi, L. Ling, B. Hongxia, L. Zaijun, Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum, Biosens. Bioelectron. 79 (2016) 457–466.
[23]X. Niu, W. Zhang, Y. Huang, L. Wang, Z. Li, W. Sun, An electrochemical sensing platform amplified with a Au@Ag nanoparticle-decorated three-dimensional N-doped graphene aerogel for ultrasensitive determination of baicalein, New J. Chem. 44 (2020) 15975–15982.
[24]Y. Xie, X. Tu, X. Ma, M. Xiao, G. Liu, F. Qu, R. Dai, L. Lu, W. Wang, In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2, 2-methylenebis (4-chlorophenol), Electrochim. Acta. 311 (2019) 114–122.
[25]S. Saadat, B. Bi, F. Mirjalili, N. Salehi, efficient synthesis of and indenopyrido [ 2 , 3- d ] pyrimidine derivatives in the presence of Fe 3 O 4 @ nano-cellulose / Sb ( V ) as bio-based magnetic nano-catalyst, 4 (n.d.) 1–16.
[26]A. Bhaskar, M. Deepa, T.N. Rao, U. V. Varadaraju, Enhanced nanoscale conduction capability of a MoO 2/Graphene composite for high performance anodes in lithium ion batteries, J. Power Sources. 216 (2012) 169–178. doi:10.1016/j.jpowsour.2012.05.050.
[27]M. Sharp, M. Petersson, Preliminary note P R E L I M I N A R Y DETERMINATIONS OF E L E C T R O N T R A N S F E R KINETICS INVOLVING F E R R O C E N E C O V A L E N T L Y ATTACHED TO A PLATINUM SURFACE, 95 (1979) 123–130.
[28]E. Laviron, Surface linear potential sweep voltammetry. Equation of the peaks for a reversible reaction when interactions between the adsorbed molecules are taken into account, J. Electroanal. Chem. 52 (1974) 395–402.
[29]D. Rao, Q. Sheng, J. Zheng, Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine, Sensors Actuators, B Chem. 236 (2016) 192–200.
[30]M. Mazloum-Ardakani, H. Beitollahi, M.K. Amini, F. Mirkhalaf, B.F. Mirjalili, A highly sensitive nanostructure-based electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of acetaminophen and tryptophan, Biosens. Bioelectron. 26 (2011) 2102–2106.