با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه شیمی، دانشگاه پیام نور، صندوق پستی 3697-19395 تهران، ایران

2 مرکز تحقیقات دارویی، انستیتوی نوروفورموکولوژی، دانشگاه علوم پزشکی کرمان، کرمان، ایران

چکیده

در این تحیقق، نانو زئولیت‌های Na/Al (ZAN) سنتز و شناسایی شدند، سپس یک الکترود کربن اصلاح ­شده (CPE) شده با   ZAN  برای اندازه گیری استامینوفن ساخته شد. مطالعات الکتروشیمیایی با ولتامتری رفت و برگشت خطی ولتامتری پالس تفاضلی انجام شد. این الکترود اصلاح شده در حضور استامینوفن به دلیل خواص الکتروکاتالیستی، پیک اکسیداسیون خاصی را در ولتاژ 59/0ولت نشان می دهد. حد تشخیص این روش 8/5 میکرومولار، انحراف استاندارد نسبی برای 7 اندازه گیری تکراری 1/1درصد و محدوده خطی کالیبراسیون برای تعیین استامینوفن 10 تا 115 میکرومولار است.

کلیدواژه‌ها

  • Naumov, M.Vasilchenko and J. Howard. The monoclinic form of acetaminophen at 150K. Acta. Crystallogr. C. 5;54 (1998) 653-5.
  • Perumalla, L. Shi and C.C. Sun. Ionized form of acetaminophen with improved compaction properties. CrystEngComm. 7;14 (2012) 2389-90.
  • Kawabata, K. Sugihara, S. Sanoh and S. Kitamura. Ultraviolet-photoproduct of acetaminophen: Structure determination and evaluation of ecotoxicological effect. J. Photoch. Photobio A. 249 (2012) 29-35.
  • Botting. Mechanism of action of acetaminophen: is there a cyclooxygenase 3? CLIN. INFECT DIS. 5;31(2000) S202-S10.
  • Anderson. Paracetamol (Acetaminophen): mechanisms of action. Pedlatr. Anesth. 10;18 (2008) 915-21.
  • Bandschapp, J. Filitz, A. Urwyler, W. Koppert and W. Ruppen. Tropisetron blocks analgesic action of acetaminophen: a human pain model study. 6;152(2011) 1304-10.
  • P. Courade.D, Besse. C. Delchambre, N. Hanoun. M, Hamon and A. Eschalier. Acetaminophen distribution in the rat central nervous system. Life. Sci. 12; 69 (2001) 1455-64.
  • H.da Silva, E.J.F. da Rosa, N.R. de Carvalho, F. Dobrachinski, J.B.T. da Rocha and J.L. Mauriz. Acute brain damage induced by acetaminophen in mice: effect of diphenyl diselenide on oxidative stress and mitochondrial dysfunction. Neurotox. Res. 3;21 (2012) 334-44.
  • Honoré, J. Buritova and J.M. Besson. Aspirin and acetaminophen reduced both Fos expression in rat lumbar spinal cord and inflammatory signs produced by carrageenin inflammation. Pain. 3;63 (1995) 365-75.
  • I. Ghanem, M.J. Pérez, J.E. Manautou and A.D. Mottino. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharm. Res. 2016; 109:119-31.
  • Şener, A.O. Şehirli and G. Ayanoğlu‐Dülger. Protective effects of melatonin, vitamin E and N‐acetylcysteine against acetaminophen toxicity in mice: a comparative study. J. Pain. Res.1;35 (2003) 61-8.
  • L. Bonkovsky, R.E. Kane, D.P. Jones, R.E. Galinsky and B. Banner. Acute hepatic and renal toxicity from low doses of acetaminophen in the absence of alcohol abuse or malnutrition: evidence for increased susceptibility to drug toxicity due to cardiopulmonary and renal insufficiency. Hepatology. 5;19 (1994) 1141-8.
  • Montaseri and P.B. Forbes. Analytical techniques for the determination of acetaminophen: A review. T.r.A.C. 108 (2018) 122-34.
  • Burgot, F. Auffret and J.L. Burgot. Determination of acetaminophen by thermometric titrimetry. Anal. Chim. Acta. 2;343 (1997) 125-8.
  • B. Choi, J.S. Song, Y.M. Kang, C.H. Suha, J. Lee and J.Y. Choe. A 2-week, multicenter, randomized, double-blind, double-dummy, add-on study of the effects of titration on tolerability of tramadol/acetaminophen combination tablet in Korean adults with knee osteoarthritis pain. Clin. Ther. 7;29 (2007) 9-1381.
  • Rahman. Application of fourier transform infrared spectroscopy for quality control of pharmaceutical products: a review. Indonesian. J. Pharm. 1;23 (2012) 1-8.
  • Gautam, B. Chandrasekar, M. Deobagkar-Lele, S. Rakshit, B.N.V. Kumar and S. Umapathy.  Identification of early biomarkers during acetaminophen-induced hepatotoxicity by Fourier transform infrared microspectroscopy. plos one . (2012).
  • C. Damsten, J.N. Commandeur, A. Fidder, A.G. Hulst, D. Touw and D. Noort. Liquid chromatography/tandem mass spectrometry detection of covalent binding of acetaminophen to human serum albumin. Drug. Metab. Dispos. 8;35 (2007) 1408-17.
  • Zhang, N. Mehrotra, N.R. Budha, M.L. Christensen and B. Meibohm. A tandem mass spectrometry assay for the simultaneous determination of acetaminophen, caffeine, phenytoin, ranitidine, and theophylline in small volume pediatric plasma specimens. Clin. Chim. ACTA. 2;398 (2008):105-12.
  • L. Helaleh and T. Korenaga. Fluorometric determination of nitrite with acetaminophen. Microchim. J. 3;64 (2000) 241-6.
  • Bu, Y. Fu, X. Jiang, H. Jin and R. Gui. Self-assembly of DNA-templated copper nanoclusters and carbon dots for ratiometric fluorometric and visual determination of arginine and acetaminophen with a logic-gate operation. Microchim. ACTA. 3;187 (2020) 1-10.
  • Lotf and H. Veisi. Pd nanoparticles decorated poly-methyldopa@ GO/Fe3O4 nanocomposite modified glassy carbon electrode as a new electrochemical sensor for simultaneous determination of acetaminophen and phenylephrine. Model. Simul. Mater Sc. 105 (2019) 110-112.
  • Chokkareddy, N. Thondavada, N.K. Bhajanthri and G.G. Redhi. An amino functionalized magnetite nanoparticle and ionic liquid based electrochemical sensor for the detection of acetaminophen. Anal. Methods. 48;11 (2019) 6204-12.
  • Sun, J. He, G.L. Waterhouse, L. Xu, H. Zhang and X. Qiao. A selective molecularly imprinted electrochemical sensor with GO@ COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen. Sensor. Actuat. B-Chem. 300 (2019) 126993.
  • M. Sanchez. Detection and Identification of Acetaminophen (Tylenol) Metabolites using Liquid Chromatography High Resolution Mass Spectrometry (LC-HRMS/MS) Analysis. Oregon state. (2020) 1-20.
  • L. Muldrew, L.P. James, L. Coop, S.S. McCullough, H.P. Hendrickson and J.A. Hinson. Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug. Metab. Dispose. 4;30 (2020) 446-51.
  • Mrochek, S. Katz, W.H. Christie and S. Dinsmore. Acetaminophen metabolism in man, as determined by high-resolution liquid chromatography. Clin. Chem. 8;20 (1974) 1086-96.
  • K. Al-Nemrawi and R.H. Dave. Formulation and characterization of acetaminophen nanoparticles in orally disintegrating films. Drug. Deliv. 2;23 (2016) 540-9.
  • Kianfar and A. Mahler. Zeolites: properties, applications, modification and selectivity. Chapter. (2020) 1-19.
  • Xie and B.L. Su. Crystalline porous materials: from zeolites to metal-organic frameworks (MOFs). Springer. (2020) 123-6.
  • V. Smith. Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev. 1;88 (1988) 149-82.
  • B. McCusker and C. Baerlocher. Zeolite structures. Studies in surface science and catalysis Amsterdam: Elsevier. (2007) 13-37.
  • Dusselier and M.E. Davis. Small-pore zeolites: synthesis and catalysis. Chem. Rev. 11;118 (2018) 5265-329.
  • Moliner, A. Corma. Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly-accessible ordered materials. Micropor.. Mesopor.. Mat. 189 (2014) 31-40.
  • Simancas, J.L. Jorda, F. Rey, A. Corma, A. Cantín and I. Peral. A new microporous zeolitic silicoborate (ITQ-52) with interconnected small and medium pores. J. Am. Chem. Soc.  9;136 (2014) 3342-5.
  • Cantín, A.Corma, S. Leiva, F. Rey J. Rius and S. Valencia. Synthesis and structure of the bidimensional zeolite ITQ-32 with small and large pores. J. Am. Chem. Soc. 33;127 (2005) 11560-1.
  • A. Villaescusa, J. Li, Z. Gao, J. Sun and M.A. Camblor. IDM‐1: A Zeolite with Intersecting Medium and Extra‐Large Pores Built as an Expansion of Zeolite MFI. Angew. Chem. 28; 132 (2020) 11379-82.
  • T. He, L. Jiang, Z.M. Ye, R. Krishna, Z.S. Zhong and P.Q. Liao. Exceptional hydrophobicity of a large-pore metal–organic zeolite. J. Am. Chem. Soc. 22;137 (2015) 7217-23.
  • U. Meshram, U.R. Khandekar, S.M. Mane and A. Mohan. Novel route of producing zeolite a resin for quality-improved detergents. J. Surfactants. Deterg. 2;18 (2015) 259-66.
  • B. Tankersley, N.P. Dunning, C. Carr, D.L. Lentz and V.L. Scarborough. Zeolite water purification at Tikal, an ancient Maya city in Guatemala. Sci. Rep-Uk. 1;10 (2020) 1-7.
  • Eroglu, M. Emekci and C.G. Athanassiou. Applications of natural zeolites on agriculture and food production. J. Sci. Food. Agr. 11;97 (2017) 3487-99.
  • Monasterio-Guillot, P. Alvarez-Lloret, A. Ibañez-Velasco, A. Fernandez-Martinez, E. Ruiz-Agudo and C. Rodriguez-Navarro. CO2 sequestration and simultaneous zeolite production by carbonation of coal fly ash: Impact on the trapping of toxic elements. J. CO2. Util. 40 (2020) 101-263.
  • Zhang, Y. Kim and P.K. Dutta. Controlled release of paraquat from surface-modified zeolite Y. Micropor. Mesopor. Mat. 3;88 (2006) 312-8.
  • F. Zhou, J.J. Ling, G. Li, S. Zhang and D. Zhu. The molecule-level photoreactor: accurate embedded iodine-substituted boron dipyrromethene dye within zeolitic imidazolate framework-8 for highly efficient oxidization of sulfides under visible light. Mater. Chem. 24 (2022)100-774.
  • Yamamoto, K. Iimura, H. Satone, K. Itoh and K. Maeda. Ozonation of aqueous phenol using high‐silica zeolite in an aerated mixing vessel. As‐P. J. Chem. Eng. 2;13 (2018) 2-175.
  • Tul Muntha, A. Kausar and M. Siddiq. A review on zeolite-reinforced polymeric membranes: salient features and applications. Polym-Plast. Technol. 18;55 (2016) 1971-87.
  • Švancara, K. Vytřas, J. Barek and J. Zima. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem. 4;31 (2001) 311-45.
  • Zima, I. Švancara, J. Barek and K. Vytřas. Recent advances in electroanalysis of organic compounds at carbon paste electrodes. Crit. Rev. Anal. Chem. 3;39 (2009) 204-27.
  • Walcarius. Zeolite-modified electrodes in electroanalytical chemistry. Anal. Chem. .Acta. 1;384 (1999) 1-16.
  • Ferreira, N.E. Sahin, A.M. Fonseca, P. Parpot and I.C. Neves. Oxidation of pollutants via an electro-Fenton-like process in aqueous media using iron–zeolite modified electrodes. New. J. Chem. 28; 45 (2021) 12750-7.
  • R. Rolison. Zeolite-modified electrodes and electrode-modified zeolites. Chem. Rev. 5;90 (1990) 867-78.
  • Xu, J. Wang and Y. Long. Zeolite-based materials for gas sensors. Ital. Phy. So. 12; 6 (2006) 1751-64.
  • El-Shafei, A. Abd Elhafeez and H. Mostafa. Ethanol oxidation at metal–zeolite-modified electrodes in alkaline medium. Part 2: palladium–zeolite-modified graphite electrode. J. Solid. State. Electr.. 2; 14 (2010) 185-90.
  • Walcarius and P. Mariaulle. L. Lamberts. Zeolite-modified solid carbon paste electrodes. J. Solid. State. Electr. 10; 7 (2003) 671-7.
  • Rohani and M.A. Taher. A new method for electrocatalytic oxidation of ascorbic acid at the Cu (II) zeolite-modified electrode. Talanta. 3;78 (2009) 743-7.
  • Lutz. Zeolite Y: synthesis, modification, and properties—a case revisited. Adv. Mater. Sci. Eng. (2014).
  • D. Rimer, M. Kumar, R. Li, A.I. Lupulescu and M.D. Oleksiak. Tailoring the physicochemical properties of zeolite catalysts. Catal. Sci. Technol. 11;4 (2014) 3762-71.
  • Möller and T. Bein. Mesoporosity–a new dimension for zeolites. Chem. Soc. Rev. 9;42 (2013) 3689-707.
  • Sharifian and A. Nezamzadeh-Ejhieh. Modification of carbon paste electrode with Fe (III)-clinoptilolite nano-particles for simultaneous voltammetric determination of acetaminophen and ascorbic acid. Adv. Mater. Res-Switz: C. 58 (2016) 510-20.
  • Tajik, H. Beitollahi, S.Z. Mohammadi, M. Azimzadeh, K. Zhang and Q. Van Le. Recent developments in electrochemical sensors for detecting hydrazine with different modified electrodes. RSC. Adv. 51;10 (2020) 30481-98.
  • W. Ondachi. Surface modified electrodes as a novel technique for characterizing adansonia digitata fruit: University of Nairobi. (2000) 1-238.