Document Type : Full research article


1 Department of Chemistry, Payame Noor University, Tehran, Iran

2 Department of Engineering, Payame Noor University, Tehran, Iran


In the present study, synthesis of silver nanoparticles and its antibacterial activity were investigated. Silver nanoparticles were rapidly synthesized using leaf extract of beet sugar leaf the formation of nanoparticles was observed within 1 hr. The results recorded from UV–vis spectrum, Transmission electron microscopy (TEM) and X-ray diffraction (XRD) support the biosynthesis and characterization of silver nanoparticles.  The UV-Visible spectrophotometer was indicated absorbance peak in range of 435-440 nm. From high resolution transmission electron microscopy (HRTEM) analysis, the size of the silver nanoparticles was measured 35–40nm. Further, the antibacterial activity of synthesized silver nanoparticles showed effective inhibitory. It showed that antibacterial activity increased by addition concentration of silver nano particle. The 0.008 molar concentrations of AgNPs, antibacterial activity was higher than other concentrations. Results confirmed this protocol as simple, rapid, one step, and eco-friendly, nontoxic and alternative conventional physical/chemical methods. Nanoparticle synthesis is a novel research are to search for an eco-friendly manner and green materials for potential applications in the fields of medicine and drug delivery.



    • Thuesombat, S. Hannongbua, S. Akasit, and S. Chadchawan, Ecotoxicology and environmental safety effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicology and Environmental Safety, 104, 2014, 302-309.
    • Mittal, J., Batra, A., Singh, A., & Sharma, M. M. (2014). Phytofabrication of nanoparticles through plant as nanofactories.Advances in Natural Sciences: Nanoscience and Nanotechnology, 5., 043002.
    • Auffan, M.; Rose, J.; Bottero, J.-Y.; Lowry, G. V.; Jolivet, J.-P.; Wiesner, M. R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol.2009,4, 634−641.
    • Suresh, A. K.; Pelletier, D. A.; Wang, W.; Morrell-Falvey, J. L.;Gu, B.; Doklycz, M. J. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir2012, 28, 2727−2735,
    • Bindhu, M. R., &Umadevi, M. (2015). Antibacterial and catalytic activities of green synthesized silver nanoparticles. SpectrochimicaActa Part A: Molecular and Biomolecular Spectroscopy, 135, 373-378.
    • Ahmed, S., Ikram, S. Chitosan and its derivatives: a review in recent innovations. International Journal of Pharmaceutical Sciences and Research. 2015, 6(1), 14- 30.
    • Hebbalalu, D.; Lalley, J.; Nadagouda, M. N.; Varma, R. S.Greener techniques for the synthesis of silver nanoparticles using plant extracts, enzymes, bacteria, biodegradable polymers, and microwaves.ACS Sustainable Chem. Eng.2013, 1(7), 703−712, DOI: 10.1021/sc4000362.
    • Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadoupoulous, D.; Tsipas, S. A.; Michailidis, N. Green synthesis and characterization of silver nanoparticles produced usingArbutusUnedoleaf extract. Mater. Lett.2012, 76,18−20.
    • Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B. Green synthesis of silver nanoparticles usingPolyalthialongifolialeaf extract along with D-sorbitol: Study of antibacterial activity.J. Nanotechnol. 2011, 2011, DOI:10.1155/2011/152970.
    • Jha, A. K.; Prasad, K.; Kumar, V.; Prasad, K. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol. Prog. 2009, 25, 1476−1479.
    • Jha, A. K.; Prasad, K.; Prasad, K.; Kulkarni, A. R. Plant system: nature’s nanofactory.Colloids Surf., B2009, 73, 219−223.
    • Huang, J.; Li, Q.; Sun, D.; Lu, Y.; Su, Y.; Yang, X.; Wang, H.; Wang, Y.; Shao, W.; He, N.; Hong, J.; Chen, C. Biosynthesis of silver and gold nanoparticles by novel sundriedCinnamomum camphoraleaf.Nanotechnol.2007, 18, DOI:10.1088/0957-4484/18/10/105104.
    • Leela, A.; Vivekanandan, M. Tapping the unexploited plant resources for the synthesis of silver nanoparticles.African J. Biotechnol.2008, 7, 3162−3165.
    • Mubarak Ali, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf., B2011, 85, 360−365.
    • Chandran, S. P.; Chaudhary, M.; Pasricha, R.; Ahmad, A.; Sastry, M. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract.Biotechnol. Prog.2006, 22, 577−583.
    • Vijayaraghavan, K.; Kamala Nalini, S. P.; UdayaPrakash, N.; Madhankumar, D. Biomimetic synthesis of silver nanoparticles by aqueous extract ofSyzygiumaromaticum. Mater. Lett.2012, 75,33−35.
    • Philip, D. Biosynthesis of Au, Ag, and Au-Ag nanoparticles using edible mushroom extract.Spectrochim. Acta, Part A2009, 73, 374−381.
    • Nadagouda, M. N.; Varma, R. S. Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract.Green Chem.2008, 10, 859−862.
    • Kaviya, S.; Santhanalakshmi, J.; Viswanathan, B.; Muthumary, J.; Srinivasan, K. Biosynthesis of silver nanoparticles usingCitrussinensis peel extract and its antibacterial activity. Spectrochim. Acta, Part A 2011, 79, 594−598.
    • Souad E. El-Gengaihi, Manal A Hamed, Doha H. Aboubaker, Abdel-Tawab H. Mossa. Int J Pharm PharmSci, 8(4), 281-286,2016.
    • A. Bhaduri, R. Little, R.B. Khomane, S.U. Lokhande, B.D. Kulkarni, B.G. Mendis, et al., Green synthesis of silver nanoparticles using sunlight, J. Photochem. Photobiol. A Chem.258 (2013) 1-9.
    • Joy Prabu, I. Johnson, Plant-mediated biosynthesis and characterization of silver nanoparticles by leaf extracts ofTragiainvolucrata, Cymbopogon citronella, Karbala International Journal of Modern Science 1, 5 (2015) 237-246.
    • Veerasamy, R., Xin, T. Z., Gunasagaran, S., Xiang, T. F. W., Yang, E.F.C., Jeyaumar, N., journal of Saudi Chemical Society, 15, 2011, 113-120.


    • Banerjee, P., Satapathy, M., Mukhopahayay, A., leaf extract mediated green synthesis of silver nanoparticles from widely available indian plants: synthesis, characterization, antimicrobial property and toxicity analysis.Das, 2014).
    • Kim, T.-G.; Kim, Y. W.; Kim, J. S.; Park, B. Silver-nanoparticledispersion from the consolidation of Ag-attached silica colloid. J.Mater. Res.2004, 19, 1400−1407.
    • Bohren, C. F.; Huffman, D. R.Absorption and Scattering of Lightby Small Particles; Wiley: New York, 1983.
    • Link, S.; El-Sayed, M. A. Optical properties and ultrafastdynamics of metallic nanocrystals.Annu. Rev. Phys. Chem.2003, 54,331−366.
    • Kreibig, U.; Vollmer, M. Optical Properties of Metal Clusters;Springer-Verlag: New York, 1995.
    • Kerker, M. The optics of colloidal silver: Something old andsomethingnew.J. Colloid Interface Sci. 1985, 105, 297−314.
    • Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma, R.P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity, J. Nanoparticle Res. 13 (2011)2981–2988.
    • Gao, X., Yourick, J. J., Topping, V. D., Black, T., Olejnik, N.,Keltner, Z., et al. Toxicogenomic study in rat thymus ofF1 generation offspring following maternal exposure to silverion. Toxicology Reports. (2014).
    • Ibrahim, H. M. M. Green synthesis and characterization ofsilver nanoparticles using banana peel extract and theirantimicrobial activity against representative microorganisms.Journal of Radiation Research and Applied Sciences. 2015.
    • ValsalamP. Agastian M. Valan Arasu N. Abdullah Al-Dhabi A.K. Mohammed Ghilan K. Kaviyarasu , B. Ravindran S. Woong Chang S. Arokiyaraj, Biosynthesis of silver and gold nanoparticles using Musa acuminate colla flower and its pharmaceutical activity against bacteria and anticancer efficacy, Journal of Photochemistry and Photobiology B:Biology. 201(2019) 111-670.
    • AryaR. M. Kumari N. Gupta A. Kumar R. Chandra, S. Nimesh, Green synthesis of silver nanoparticles using Prosopis juliflora bark extract:reaction optimization, antimicrobial and catalytic activities, Artif. Cells, nanomed Biotechnol. 46(5) (2018) 985-993.
    • Asghar, M. N. Aamir, F. A. Sheikh, N. Ahmad, N. F. Alotaibi, S. Nasir A. Bukhari, Preparation,Characterization of Pregabalin and Withania coagulans Extract-Loaded Topical Geland Their Comparative Effect on Burn Injury, Gels, 402 (2022) 1-18.
    • Moreira-Muñoz and M. Muñoz-Schick, Rediscovery and taxonomic placement of Solanum polyphyllum Phil. (Solanaceae), a narrow endemic from the Chilean Atacama Desert, PhytoKeys 156 (2020) 47–54 .
    • Jamila , N. Khan , A. Bibi , A. Haider , S. Noor Khan,
      A. Atlas and U. Nishan, Piper longum catkin extract mediated synthesis of
      Ag, Cu, and Ni nanoparticles and their applications as biological and environmental remediation agents , Arabian Journal of Chemistry, 13 (2020) 6425–6436.
    • Öztürk Küp, S. Çoşkunçay and F. Duman, Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release
      system activities, Materials Sci. and Engineering:C. 107 (2020) 110207.
    • Chaudhary1, S. Sharma1, A. Mittal1, S. Gupta1, and A. Dua, Phytochemical and antioxidant profiling of Ocimum sanctum, J Food Sci Technol, 57(10) (2020) 3852–3863.
    • J. G. Kim, B.‐C. Park,  C. Liu, G. Qiang, H. J. Kim and  E. K. Ahn, Productivity and quality of whole crop rice varieties in relation to plant components, Grassland Science, 66 (2020) 40-47.