Document Type : Full research article


1 Department of Chemistry, Payame Noor University, Tehran, Iran

2 Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran


A new potentiometric sensor based on a β- cyclodextrin modified carbon paste electrode (CPE) was designed for the determination of the captopril drug. The effect of various cyclodextrins (α, β and γ- cyclodextrins) and their percentage, binder agent and ion additive on the potential response have been investigated and the electrode with the best potential response was found. The linear concentration range for this electrode was 7.0×10-7-1.0×10-1 M with a low detection limit of 2.0 × 10-7 M. The effect of pH and temperature on the Nernstian slope was also investigated and the optimal range was obtained. The selectivity of the captopril CPE to interfering species including Li+, K+, Ni+, Mg2+, Ca2+, Co2+, Cr2+, Cr3+, Zn2+,Mn2+, Fe2+, F-, Cl-, SO42-, C2O42- PO43-, C2O42-, ascorbic acid, uric acid, glucose, D-fructose and sucrose was determined by Separate Solution (SSM) and Matched Potential Method (MPM) methods. Finally, the proposed electrode was tested for measuring captopril in drug formulation, blood serum, and urine samples. 


  • Hillaert, W. Van den Bossche, Determination of captopril and its degradation products by capillary electrophoresis, J. Pharm. Biomed, 21 (1999) 65-73.
  • Cavrini, R. Gotti, V. Andrisano, R. Gatti, 1, 1′-[Ethenylidenebis (sulfonyl)] bis-benzene: A useful pre-chromatographic derivatization reagent for HPLC analysis of thiol drugs, Chromatographia, 42 (1996) 515-520.
  • Fraga, A. Abizanda, F. Moreno, J. Leon, Application of principal component regression to the determination of captopril by differential pulse polarography with no prior removal of dissolved oxygen, Talanta, 46 (1998) 75-82.
  • Sarna, Z. Fijalek, Voltammetric and electrochemical quartz crystal microbalance study of antithyroid drugs, Chemia analityczna, 42 (1997) 425-433.
  • Nikolic, K. Velasevic, Coulometric determination of captopril, Acta Pol. Pharm., 48 (1991) 5-5.
  • E. Mohamed, H.Y. Aboul-enein, Amperometric and conductimetric methods for simultaneous determination of captopril and bendroflumethiazide, Anal. Lett., 18 (1985) 2591-2603.
  • Umezawa, P. Bühlmann, K. Umezawa, K. Tohda, and S. Amemiya, Pure and Applied
    . 72 (2000) 1851.
  • d.S. Ribeiro, A. Santini, H.R. Pezza, L. Pezza, Potentiometric determination of captopril in pharmaceutical formulations, Eclética Quím., 28 (2003) 39-44.
  • S. Guerrero, S.S. Vives, J.M. Calatayud, Fluorimetric determination of captopril by flow injection analysis, Microchem. J., 43 (1991) 176-180.
  • Sastry, A. Sailaja, T.T. Rao, Determination of captopril by two simple spectrophotometric methods using oxidative coupling reaction, Die Pharmazie, 46 (1991) 465.
  • D. Zhang, W.R.G. Baeyens, X.R. Zhang, G. Van der Weken, Chemiluminescence flow-injection analysis of captopril applying a sensitized rhodamine 6G method, J. Pharm. Biomed, 14 (1996) 939-945.
  • -I. Stefan, J.K.F. van Staden, H.Y. Aboul-Enein, A new construction for a potentiometric, enantioselective membrane electrode—its utilization to the S-captopril assay, Talanta, 48 (1999) 1139-1143.
  • Tajik, H. Beitollahi, F.G. Nejad, M. Safaei, K. Zhang, Q. Van Le, R.S. Varma, H.W. Jang, M. Shokouhimehr, Developments and applications of nanomaterial-based carbon paste electrodes, RSC Advances, 10 (2020) 21561-21581.
  • Gidwani, A. Vyas, A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs, Biomed Res. Int., 2015 (2015).
  • Khalil, A.Kelzieh, and S. A. Ibrahim, Ion-selective electrode for the determination of prazosin in tablets, J. Pharm. Biomed. Anal., 33 (2003) 825.
  • Ibrahim, Y. M. Issa, and H. M. Abu-Shawish, Potentiometric flow injection analysis of dicyclomine hydrochloride in serum, urine and milk, Anal. Chim. Acta, 532 (2005) 79.
  • Shahrokhian, Z. Kamalzadeh, A. Bezaatpour, D.M. Boghaei, Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes, Sens. Actuators B Chem., 133 (2008) 599-606.
  • Karimi-Maleh, A. Ensafi, A. Allafchian, Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode, J. Solid State Electrochem., 14 (2010) 9-15.
  • A. Ensafi, B. Rezaei, Z. Mirahmadi-Zare, H. Karimi-Maleh, Highly selective and sensitive voltammetric sensor for captopril determination based on modified multiwall carbon nanotubes paste electrode, J. Braz. Chem. Soc., 22 (2011) 1315-1322.
  • Mazloum-Ardakani, M.A. Sheikh-Mohseni, B.-F. Mirjalili, L. Zamani, Simultaneous determination of captopril, acetaminophen and tryptophan at a modified electrode based on carbon nanotubes, J. Electroanal. Chem., 686 (2012) 12-18.
  • Jalali, S. Ranjbar, Electrocatalytic oxidation of captopril using a carbon-paste electrode modified with copper-cobalt hexacyanoferrate, Russ. J. Electrochem., 50 (2014) 482-489.
  • Beitollahi, M.A. Taher, M. Ahmadipour, R. Hosseinzadeh, Electrocatalytic determination of captopril using a modified carbon nanotube paste electrode: application to determination of captopril in pharmaceutical and biological samples, Measurement, 47 (2014) 770-776.
  • Bagheri, H. Karimi-Maleh, F. Karimi, S. Mallakpour, M. Keyvanfard, Square wave voltammetric determination of captopril in liquid phase using N-(4-hydroxyphenyl)-3, 5-dinitrobenzamide modified ZnO/CNT carbon paste electrode as a novel electrochemical sensor, J. Mol. Liq., 198 (2014) 193-199.
  • Karimi-Maleh, M. Moazampour, V.K. Gupta, A.L. Sanati, Electrocatalytic determination of captopril in real samples using NiO nanoparticle modified (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol carbon paste electrode, Sens. Actuators B Chem., 199 (2014) 47-53.
  • Krimi, M. Keyvanfard, K. Alizad, Voltammmetric determination of captopril using multiwall carbon nanotubes paste electrode in the presence of isoproterenol as a mediator, Iranian J. Pharm. Res. Int: IJPR, 15 (2016) 107.
  • Seifie-Makrani, N. Sajjadi, O. Younesi, H. Bagheri, A new strategy for determination of captopril as a hypertension drug using zno nanoparticle modified carbon paste electrode, Int. J. Electrochem. Sci., 9 (2014) 1799-1811.
  • Karimi-Maleh, M.R. Ganjali, P. Norouzi, A. Bananezhad, Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide, Mater. Sci. Eng. C, 73 (2017) 472-477.
  • Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples, Anal. Methods, 8 (2016) 1780-1788.
  • M. da Silva, M.C. da Cunha Areias, Rutin as an electrochemical mediator in the determination of captopril using a graphite paste electrode, Electroanalysis, 32 (2020) 301-307.
  • Shahbakhsh, Z. Hashemzaei, S. Narouie, Y. Shahbakhsh, M. Noroozifar, Gold Nanoparticles/Biphenol–biphenoquinone for Ultra‐trace Voltammetric Determination of Captopril, Electroanalysis, 33 (2021) 713-722.