In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Author

Department of Mathematics, Jahrom University, P.O. Box: 74135-111, Iran

Abstract

Topological indices are graph invariants used in theoretical chemistry to encode molecules for the design of chemical compounds with given physicochemical properties or given pharmacological and biological activities. Szeged index ( ) and Revised Szeged index ( ) of molecular graph identify some distance properties for graphs. In computational chemistry and graph theory, ( ) and ( ) were more available to test the characteristics of chemical molecular structures, and thus widely used in chemical applications. In this paper, a simple algorithm is presented for constructing the distance matrix. This algorithm is designed for calculation of  and .

Keywords

  • Aouchiche and P. Hansena , On a conjecture about the Szeged index, Eur. J. Comb. 31 (2010) 1662 –1666.
  • V. Khadikar, N.V. Kale, P.P. Dobrynin, I. Gutman and G. Domotor, The Szeged index and an analogy with the Wiener index, J. Chem. Inform. Comput. sci., 35 (1995) 547 –550.
  • Klavzar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, App. Math. Lett., 9 (1996) 45–49.
  • Pisanski and M. Randic, Use of the Szeged index and the revised Szeged index for measuring network bipartivity, Dis. App. Math., 158 (2010) 1936–1944.
  • Randic, On generalization of Wiener index for cyclic structures, Acta Chim. Slovenica, 49 (2002) 483–496.
  • C. Das and I. Gutman, Estimating the Szeged index, App. Math. Lett., 22 (2009) 1680–1684.
  • L. Li and M.M. Liu, Bicyclic graphs with maximal revised Szeged index, Disc. App. Math., 161 (2013) 2527–2531.
  • Pisanski and J. Zerovnik, Edge contributions of some topological indices and arboreality of molecular graphs, Ars Math. Contemporanea, 2 (2009) 49–58.
  • Simic and I. Gutman, V. Baltic, Some graphs with extremal Szeged index, Math. Slovaca, 50 (2000) 1–15.
  • Xing and B. Zhou, On the revised Szeged index, Dis. App. Math., 159 (2011) 69–78.
  • T. Balaban, Topological indices based on topological distances in molecular graphs, Pure and Applied Chemistry, 55 (1983) 199–206.
  • T. Balaban, Highly discriminating distance-based topological index, Chem. Phys. Lett., 89 (1989) 399–404.
  • Hosoya, Topological index: A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Japan, 44 (1971) 2332–2339.
  • Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
  • Gutman, W. Linert, I. Lukovits and Z. Tomovic, On the multiplicative Wiener index and its possible chemical applications, Monatshefte fur Chemie, 131 (2000) 421–427.
  • Gutman, W. Linert, I. Lukovits and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40 (2000). 113–116.
  • Lucic, I. Lukovits, S. Nikolic and N. Trinajstic, Distance-related indexes in the quantitative structure-property relationship modeling, J. Chem. Inf. Comput. Sci., 41 (2001) 527–535.
  • G. Seybold, Topological influences on the carcinogenecity of aromatic hydrocarbons. I. Bay region geometry, Int. J. Quantum Chem., 10 (1983) 95–101.
  • R. Muller, K. Szymanski, J.V. Knop and N. Trinajstic, An Algorithm for construction of the molecular distance matrix, J. Comput. Chemistry, 8 (1987) 170–173.
  • https://stackoverflow.com/questions/32164012/how-to-get-distance-matrix-from-adjacency-matrix-matlab, May, 2021.
  • Faghani, A.R. Ashraf, Revised and edge revised Szeged indices of graphs, Ars Math. Contemporanea, 7 (2013) 153–160.
  • Mottaghi and Z. Mehranian, PI, Szeged and Revised Szeged Indices of IPR Fullerenes, Iranian J. Math. Chem., 2 (2) (2011) 87-99.
  • Yang, M. Naeem, A. Q. Baig, H. Shaker and M. K. Siddiqui, Vertex Szeged index of crystal cubic carbon structure, J. Dis. Math. Sci. Crypto., 22 (2019) 1177–1187.