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Abstract 

Amitraz removal was investigated by synthesized TiO2 from an aqueous solution. For this propose, FT-IR, 

XRD, UV–Vis, SEM and EDS were used to characterize the synthesized nano adsorbents and to determine the 

removal process. Batch adsorption studies were conducted to investigate the effect of temperature, initial 

Amitraz concentration, adsorbent count and contact time as important adsorption parameters. The maximum 

equilibrium time was found to be 15 min with 5 mg adsorbent in 35ºC at pH=7 for TiO2. All the adsorption 

equilibrium data were well fitted to the Freundlich isotherm model with heterogenous, multilayer, temperature 

depended, irreversible and spontaneously behavior. The ∆H is -4.2×103 kJ and ∆S is 15 J mol-1K-1.  
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1. INTRODUCTION 
Amitraz[1–4] is a widely used and effective 

insecticide and acaricide, mainly used in veterinary 

medicine to control ticks, mites and lice on animals 

(Farmer and Seawright and in agriculture to 

control fruit tree and cotton pests. In some 

countries it has been also registered for the use in 

apiculture to control the varroa mite (Varroa 

destructor). Its effectiveness and wide spectrum 

can be explained by its several biochemical targets, 

including the inhibition of monoamine oxidases 

and the activation of octopamine receptors [5-6]. 

Once in the environment, due to its high log Kow 

(5.34–5.5), amitraz is expected to adsorb to soil 

and sediment and to quickly metabolize into 

persistent and more water-soluble products [7]. 

However, in several countries, due to its 

widespread use and high direct application rate, 

there is an elevated risk of run-off and 

contamination of adjacent aquatic ecosystems. 

Since parent amitraz is short-lived in the 

environment, it is not expected to pose a major 

concern for aquatic invertebrates, as opposed to 

some more stable and toxicologically relevant 

metabolites that retain toxic activity [5]. 

The release of neonicotinoid pesticides [8–12] is a 

significant concern for the environment due to 

their high mobility in the soil and the 

contamination of groundwater and surface water. 

For example, imidacloprid is one of the most 

widely used neonicotinoid pesticides, effective 

against agricultural pests, so it appears in the 

aquatic environment in increasing concentrations, 

affecting insects, birds, crustaceans, fish, and 

organisms in the soil by increasing acidity. 

Advanced oxidation processes (AOP) are 

degradation processes of organic pollutants, in 

particular pesticides, based on reactive oxygen 

species (ROS) generated on the photocatalyst 

surface [13-14, 23–25, 15–22]. Titanium oxide-

based heterogeneous photocatalysis [26-27, 36–42, 

28–35] for pollutant degradation has been 

investigated over decades and is based on the 

reaction between a broad range of organic 

pollutants and ROS species [17]. In this scientific 

work, adsorption of Amitraz on TiO2 considered. 

The parameters which affected on adsorption were 

studied and isotherms were investigated. 

 

2. EXPERIMENTAL  
Amitraz, Sulfuric acid, Hydrochloric acid and 

Ethanol were purchased from Merck Company. 

 

2.1. Synthesis of TiO2 

For synthesis of TiO2, leaching process was 

applied [43] That is, The ilmenite concentrate was 

received from Kahnooj/Iran processing plant (Iran) 

mine. Leaching experiments were carried out 

under sulfuric acid leaching process. 0.5g TiFeO3 

was added to 20mL pure H2SO4(Merck,Germany) 

by 120°C heat. After 30 min the mixture was 

filtered, and then H2O was added to precipitate in 

ultra-sounding bath at 50°C for 15 min. Leaching 

experiments were carried out under Hydrochloric 

acid leaching process. 1g of thermal treatment 

TiFeO3 was added to 100 mL HCl 6M 

(Merck,Germany) with 100°C heat. After 8 hours 

the mixture was filtered, and then HCl was added 
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to wash the precipitate. This process repeated for 

three times to attain pure rutile. The precipitate has 

calcinated for 1 hour at 950°C. Before using an 

ilmenite concentrate (Kahnooj/ Iran), the ilmenite 

concentrate was given a thermal pre-leach 

treatment (oxidation at 800°C, for 30 min and 

reduction in argon at 950°C, for 1h and 1/0.75 ratio 

of ilmenite to active coal and finally cooling in 

nitrogen The pre-leach thermal treatment converts 

most of the contained iron back to the ferrous state, 

and transforms the pseudorutile phase. 

 

2.2. TiO2 characterization 

The phase and crystal structure of the samples were 

analyzed via X-ray diffraction technique ( X'Pert 

Pro, Netherland, Panalytical Company) with Cu-

Kα as basis of energy. The TESCAN MIRA3 field 

emission scanning electron microscope (FE-SEM) 

(Czech Republic) integrated with EDS detector 

was utilized for imaging and elemental analysis of 

prepared nanostructures. Infrared (IR) spectra was 

obtained with a SHIMADZU spectrophotometer, 

over a scan range of 500 cm-1-4000 cm-1. 

 

2.3. Adsorption experiments 

The present research carried out Amitraz 

equilibrium adsorption on TiO2. The study also 

considered constant concentrations of amitraz in 

different time and temperature conditions with the 

use of an orbital shaker which operated at 150 rpm 

agitation speed. It also utilized 5 ppm stock 

solutions of Amitraz. Analysis of the solution for 

concentrations of Amitraz and its adsorption on the 

adsorbent at equilibrium time with the use of UV–

Visible spectroscopy were conducted following 

magnetic separation and filtration. The relation 

below was used to calculate the amitraz adsorption 

on the adsorbent at equilibrium time of qe: 

𝑞𝑒 =
𝑉×(𝐶0−𝐶𝑒)

𝑚
                                                   (1) 

 In which, Co, Ce, V, and m represent the primary 

Amitraz concentrations (mg/L), Amitraz 

concentrations (mg/L) in solution following the 

adsorption, the solution volume (L), and the mass 

(g) of TiO2. the following relation was used to 

calculate the percentage of Amitraz removal: 

(% 𝑅) =
𝐶0 − 𝐶𝑡

𝐶0

× 100                                        (2) 

 In which, Co and Ct indicate the primary Amitraz 

solution concentrations (mg/L) and the ultimate 

concentrations (mg/L) following the process of 

adsorption, respectively. Relation 3 was used to 

calculate adsorption capacity from the adsorbent 

mass and Amitraz solution volume: 

𝑞
𝑡(𝑚𝑔)=

𝑉×(𝐶0−𝐶𝑡)
𝑚

                                                                           
(3) 

 In which m and V represent the adsorbent dose 

(mg) and Amitraz solution volume (L). 

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of TiO2 

The X-ray diffraction patterns of TiO2 in Fig. 1. 

Shown that the main peak on 2θ 27.5º, 36º, 41.5º, 

54.2º, 56.5º, 63º and 65 refers to TiO2 in rutil 

forms. Some extra peaks were appeared in XRD 

pattern which can refer to non-pure forms of TiO2. 

The position of 2θ at 27.42°, 36.08°, 41.25°, 54.33° 

and 63.44° corresponds to Miller indices of (110), 

(101), (111), (211) and (002) plane, respectively 

[44]. 

 

 
Fig. 1. The XRD pattern of TiO2. 

Infrared spectrum of the synthesized TiO2 

nanoparticles was in the range of 500-4000 cm -1 

wave number which identifies the chemical bonds 

as well as functional group in the compound (Fig. 

2). The broad intense band below 1200cm-1 is due 

to Ti-O-Ti vibrations [45]. 

 

Fig. 2. The IR spectrum of TiO2 

3.2. Morphology of TiO2 

The synthesized TiO2's topographical features 

were investigated using a scanning electron 

microscope. As depicted in Fig. 3, the 

nanoparticles of TiO2 showcased a rod-like 

configuration, with widths ranging 97nm. 
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Table 1. % weight of each atom in TiO2 (EDX) 

Elt Line Int Error K Kr W% A% 

O Ka 66.1 15.1934 0.1073 0.0638 41.31 67.82 

Ti Ka 614.9 1.3418 0.8927 0.5309 58.69 32.18 

    1.0000 0.5947 100.00 100.00 

 

 

 
Fig. 3. SEM and EDX TiO2. 

 

Energy dispersive spectrometry (EDX), an X-ray 

analytical technique, facilitates the swift 

acquisition of elemental concentrations Table 1. 

These concentrations can be procured from 

specific points, traced along lines, or mapped. A 

two-dimensional representation of the distribution 

of elements within the sample can be produced by 

displaying the characteristic X-ray intensities or 

elemental concentrations. Fig. 4 demonstrates a 

uniform distribution of the O and Ti elements 

within the nanorods. 

 

 
Fig. 4. Map of TiO2. 

 

3.3. Adsorption analysis 
Fig. 5 indicates the UV-Vis spectrum of Amitraz. 
UV-Vis spectrum indicated the transition electrons 
between occupied or unoccupied electron layers. 
Electrons on n, σ and π levels have sharp peaks on 
the UV-Vis spectrum. N electrons are nonbinding 
electrons that appeared around O, N, S and 
Halogen atoms. These electrons need low energy ( 
n → π ∗) and in 150-250 nm, which is not 
presented in the UV-Vis spectrum. Transitions of 
(n → π ∗) and ( π → π ∗) appeared at 200-700 nm 
and are very important. These transitions referred 
to unsaturated and aromatic molecules which are 
chromophores. According to the Fig. 5. peak at 
260-280 nm, it can result that Amitraz has n atoms 
and (n → π ∗) transitions and this peak applied for 
analyzing the adsorption process. In Schematic 1 
the structure of Amitraz demonstrate. 
 

 
Schem. 1. Structure of Amitraz 

 

Fig. 5. UV-Vis spectrum of Amitraz in different 

concentration. 

In this study, the TiO2 was used to remove the 

Amitraz from water. For this purpose different 

masses of nano TiO2 powder was applied for 

removing the different concentrations of Amitraz 

in the solution in various conditions such as time, 

temperature and pH. 

 
Fig. 6. Effect of adsorbent (TiO2) on adsorption 

efficiency. 

 

As shown in Fig. 7.  the weight of TiO2 which 

applied is 3,5,7,9 and11 mg and according to the 

data plotted 5 mg of TiO2 is the weight that can 

optimized for applying adsorption. It can be 

observed that by rising the weigh the adsorption 

efficiency is constant. Therefore, it is clear that the 

last weight must be selected for doing experiments.  

 
Fig. 7. Calibration curve of Amitraz concentration 

For detection the concentration of adsorbed 

Amitraz, knowing the adsorb of it on different 

concentration is necessary therefore the calibration 

curve of Amitraz illustrated in Fig. 7.  According 
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to Fig. 7. it is understood that the linear adsorption 

area for Amitraz is under 5 ppm. Therefore, for 

optimizing the Amitraz concentration (Fig. 8), the 

1, 3, 5, 7, 10 ppm of Amitraz with 5 mg of TiO2 

examined. The Results showed that concentration 

5 ppm of Amitraz has best result for adsorb 

process. 

 
Fig. 8. Optimizing of Amitraz concentration. 

 

In the structure of Amitraz, three nitrogen atoms 

appeared therefore, Amitraz has three non-bond 

electron that can give H+ ion. Consideration effect 

of pH on adsorption process demonstrated that 

adsorption efficiency decreased when pH 

increased Fig. 9.  

 
Fig. 9. Effect of pH on adsorption efficiency of Amitraz. 

 

For detecting the effect of time on adsorption 

efficiency, in Fig. 10 the plot of time effect can be 

seen that resulted after 15 min the site of TiO2 

saturated. Increasing the temperature caused 

decreasing the adsorption efficiency of Amitraz. It 

resulted in kinetic energy of Amitraz molecules on 

TiO2 surface get increased and move far from the 

TiO2 surface Fig. 11. 

 
Fig. 10. Effect of time on Amitraz adsorption 

 
Fig. 11. Effect of temperature on Amitraz adsorption 

 

Adsorption behavoiur of Amitraz on TiO2 can 

consider with isotherms. Furthere more 

Freundlidch and Langmuir isotherms were plotted. 

Fig. 12 demonstrated the behavouir of adsorption. 

As shown in the Fig. 12 adsorption bahavoiur 

adapted with Frenudlich isotherm R2=0.97. 

Therefore it can be resulted that adsrption of 

Amitraz is multilayer and irreversible and 

distribution of Amitraz is heterogenous on the 

surface of TiO2 depended on temperature. 

 

 

 
Fig. 12. Isotherms of adsorption Amitraz on TiO2 

 

Themodynamic manner of amitraz adsorption is 

also important. Therefore in Fig 13 Log K plotted 

versus 1/T  R2=0.97 and the data shown that ∆H is 

-4.2×103 kJ and ∆S is 15 J mol-1K-1 . These data 

means that the adsorption of Amitraz on TiO2 is 

spontanously.  
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Fig. 13. Thermodanamic manner of Amitraz adsorption 

on TiO2. 

 

4. CONCLUSIONS 

In the present research Adsorption of Amitraz on 

TiO2 was investigated. Some parameters such as 

concentration of Amitraz, time, temperature, 

adsorbent amount and pH were considered. The 

data showed adsorption of Amitraz depended on 

time, temperature and pH. The results illustrated 

that this process is heterogenous, temperature 

depended, irreversible and spontaneously.  
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 چکیده

 توصیف برای EDS وIR-FT ،XRD ،Vis-UV ،SEM پیشنهاد، این برای. گرفت قرار بررسی مورد آبی محلول از شده سنتز 2TiO توسط آمیتراز حذف
 عنوان هب تماس زمان و جاذب تعداد آمیتراز، اولیه غلظت دما، اثر بررسی برای ای دسته جذب مطالعات. شد استفاده حذف فرآیند تعیین و شده سنتز هاینانوجاذب

 تعادل هایداده همه. بود 2TiO برای pH=7 در سانتیگراد درجه 35 دمای در جاذب گرم میلی 5 با دقیقه 15 تعادل زمان حداکثر. شد انجام جذب مهم پارامترهای
 .داشتند مطابقت خودخودبه و ناپذیربرگشت دما، به وابسته لایه، چند ناهمگن، رفتار با فروندلیخ ایزوترم مدل با خوبی به جذب

 

 کلید واژه ها

.سینتیک ایزوترم؛ جاذب ؛2TiO حذف؛ آمیتراز؛
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