با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 گروه شیمی، دانشگاه پیام نور، تهران، ایران

2 مرکز تحقیقات پروتئین دانشگاه شهید بهشتی، تهران، ایران

چکیده

الکترواکسیداسیون آسیکلوویر با استفاده از الکترودخمیری کربن اصلاح ­شده با نانو ذرات مس سنتزی تثبیت ­شده بر روی اکسیدگرافن احیاشده (Cu/RGO) مطالعه شد. در این مطالعه، از عصاره برگ رزماری به عنوان عامل کاهنده و تثبیت­ کننده برای بیوسنتز نانوذرات مس استفاده شد. برای شناسایی ساختار نانوذرات و نانو کامپوزیت سنتز شده از XRD، FT-IR،SEM  و  TEMاستفاده شد. عملکرد الکتروشیمیایی Cu/RGO در محلول قلیایی بررسی شد و پس از آن برای اصلاح الکترود خمیری کربن برای مطالعه اکسیداسیون الکتروکاتالیتیکی آسیکلوویر استفاده گردید و با اصلاح­گر مس به تنهایی مقایسه شد. از روش­ های ولتامتری چرخه ­ای و کرونوآمپرومتری برای مطالعه مکانیسم اکسیداسیون و تعیین ثابت سرعت الکتروکاتالیتیکی و ضریب نفوذ آسیکلوویر استفاده شد. حد تشخیص الکترود اصلاح ­شده 63/0 میکرومولار بود. علاوه برآن، ثابت سرعت اکسیداسیون الکتروکاتالیتیکی آسیکلوویر cm3 mol-1s-1105× (03/0 ± 8/1) و ضریب انتقال الکترون، cm2s-16-10× (05/0 ± 4) محاسبه شد.

کلیدواژه‌ها

 
[1]     A.K. Geim and K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.
[2]     J.S. Bunch, A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead and P.L. McEuen, Electromechanical Resonators from Graphene Sheets, Science 315 (2007) 490-493.
[3]     S. Park and R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol. 4 (2009) 217-224.
[4]     B.F.Machado and P. Serp, Graphene-based materials for catalysis, Catal. Sci. Technol. 2 (2012) 54-75.
[5]     P. Zijlstra and M. Orrit, Single metal nanoparticles: optical detection, spectroscopy and applications, Rep. Prog. Phys.74 (2011) 106401.
[6]     B.M. Munoz-Flores, B. I. Kharisov, V. M. Jimenez-Perez, P.E. Martinez and S.T. Lopez Recent Advances in the Synthesis and Main Applications of Metallic Nanoalloys, Ind. Eng. Chem. Res. 50 (2011) 7705-77021.
[7]     S.J. Guo and E.K. Wang, Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors, Nano Today 6 (2011) 240-264.
[8]     G. Thirumurugan and M.D. Dhanaraju, Novel Biogenic Metal Nanoparticles for Pharmaceutical Applications, Adv. Sci. Lett. 4 (2011) 339-348.
[9]     E. Comini and G. Sberveglieri, Metal oxide nanowires as chemical sensors, Mater. Today, 13 (2010) 28.
[10] A. Kolmakov and M. Moskovits, Chemical sensing and catalysis by one Dimensional metal-oxide nanostructures, Annu. Rev. Mater. Res. 34 (2004) 151-180.
[11] R. Muszynski, R.B. Seger and P.V. Kamat, Decorating Graphene Sheets with Gold Nanoparticles, J. Phys. Chem. C 112 (2008) 5263-5266.
[12] P.V. Kamat, Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, J. Phys. Chem. Lett. 1 (2010) 520-527.
[13] B. Seger and P.V. Kamat, Electrocatalytically Active Graphene-Platinum Nanocomposites. Role of 2-D Carbon Support in PEM Fuel Cells, J. Phys. Chem. C 113 (2009) 7990.
[14] Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner and D. Chen, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets, ACS Nano 4 (2010) 1227-1233.
[15] I.V. Lightcap, T.H. Kosel and P.V. Kamat, Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide, Nano Lett. 10(2010) 577-583.
[16] Si. Yongchao and T.S. Edward, Exfoliated Graphene Separated by Platinum Nanoparticles, Chem. Mater. 20 (2008) 6792-6797.
[17] M. Nasrollahzadeh, F. Babaei, P. Fakhri and B. Jaleh, Synthesis, characterization, structural, optical properties and catalytic activity of reduced graphene oxide/copper nanocomposites, RSC Adv. 5 (2015)10782-10789.
[18] M. Bagherzadeh and A. Farahbakhsh, in: A. Tiwari, M. Syvajarvi (Eds.), Surface functionalization of graphene, in Graphene Materials: Fundamentals and Emerging Applications, Wiley, New York (2015).
[19] J. ShabaniShayeh, A. Ehsani, M.R. Ganjalia, P. Norouzian and B. Jalehda, Conductive polymer/reduced graphene oxide/Au nanoparticles as efficient composite materials in electrochemical supercapacitors, Appl. Surf. Sci. 353 (2015) 594-599.
[20] Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi and T. Uruga, Bioreductive deposition of platinum nanoparticles on the bacterium shewanella algae, J. Biotechnol. 128 (2007) 648-653.
[21] M. Rai, A. Yadav and A. Cade, Current [corrected] trends in phytosynthesis of metal nanoparticles, Crit. Rev. Biotechnol. 28 (2008) 277-284.
[22] E.S. Abdel-Halim, M.H. El-Rafie and S.S. Al-Deyab, Polyacrylamide/guar gum graft copolymer for preparation of silver nanoparticles, Carbohydr. Polym. 85 (2011) 692-697.
[23] A.R. Jasbi, Chemistry and biological activity of secondary metabolites in Euphorbia from Iran, Phytochem. 67 (2006) 1977-1984.
[24] S.P. Dubey, M. Lahtinen and M. Sillanpa, Tansy fruit mediated greener synthesis of silver and gold nanoparticles Process, Biochem. 45 (2010) 1065-1071.
[25] G. Zhan, J. Huang, M. Du, I. Abdul-Rauf, Y. Ma and Q. Li, Green synthesis of Au–Pd bimetallic nanoparticles: Single-step bioreduction method with plant extract, Mat. Lett. 65 (2011) 2989-2991.
[26] X. Huang, H. Wu, S. Pu, W. Zhang, X. Liao and B. Shi, One-step room-temperature synthesis of Au@Pd core-shell nanoparticles with the tunable structure using plant tannin as reductant and stabilizer, Green Chem. 13 (2011) 950-957.
[27] A. Rohi, K. Karimian and H. Heli, Nanostructured materials in electroanalysis of pharmaceuticals, Anal. Biochem. 497 (2016) 39-47.
[28] S. Skrzypek, W. Ciesielski and S. Yilmaz, Voltammetric study of aciclovir using controlled grow mercury drop electrode, Chem. Anal. 52 (2007) 1071-1079.
[30] M. Sadikoglu, G. Saglikoglu, S. Yagmur, E. Orta and S. Yilmaz, Voltammetric determination of acyclovir in human urine using ultra trace graphite and glassy carbon electrodes, Curr. Anal. Chem. 7 (2011) 130-135.
[31] H. Heli, F. Pourbahman and N. Sattarahmady, Nanoporous Nickel Microspheres: Synthesis and Application for the Electrocatalytic Oxidation and Determination of Acyclovir, Anal. Sci. 28 (2012) 503-510.
[33] Z. Xu, Y. Zhang, X. Qian, J. Shi, L. Chen, B. Li, J. Niu, L. Liu, One-step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal, Appl. Surf. Sci. 316 (2014) 308–314.
[34] Z. Xiong, L.L. Zhang, J. Ma, X.S. Zhao, Photocatalytic degradation of dyes over graphene- gold nanocomposites under visible light irradiation Chem. Commun. 46 (2010) 6099-6101.
[35] Omar H. Abd-Elkader, N.M. Derza, Synthesis and characterization of new copper-based nanocomposite, Int. J. Electrochem.Sci. 8 (2013) 8614-8622.
[36] Marioli, J. M.; Kuwana, T.; Electrochemical characterization of carbohydrate oxidation at copper electrodes, Electrochim. Acta, 37 (1992) 1187-1197.
[37] K. Kano, M. Torimura, Y.Esaka, M. Goto, T. Ueda, Electrocatalytic oxidation of carbohydrates at copper (II)-modified electrodes and its application to flow-through detection, J. Electroanal. Chem. 372 (1994) 137-143.
[38] CH. Pyun, SM. Park, In Situ Spectro-electrochemical Studies on Anodic Oxidation of Copper in Alkaline Solution, J. Electrochem. Soc. 133 (1986) 2024-2030.
[39] J. M. M. Droog, C. A. Alderliesten, P. T. Alserliesten, G. A. Gootsma, Initial stages of anodic oxidation of poly-crystalline copper electrodes in alkaline solution, J. Electroanal. Chem. 111 (1980) 61-70.
[41] M. Hajjizadeh, A. Jabbari, H. Heli, AA. Moosavi-Movahedi, Electrooxidation and determination of mefenamic acid and indomethacin using a copper electrode, Chem. Anal. 53 (2008) 429- 444.
[42] B. Miller, Split‐Ring Disk Study of the Anodic Processes at a Copper Electrode in Alkaline Solution, J. Electrochem. Soc. 116 (1969) 16750-17680.
[43] LD. Burke, MJG. Ahern, TG. Ryan, An Investigation of the Anodic Behavior of Copper and Its Anodically Produced Oxides in Aqueous Solutions of High pH, J. Electrochem. Soc. 137 (1990) 553-561.
[45] S. M. Abd el Haleem, B. G. Ateya, Cyclic voltammetry of copper in sodium hydroxide solutions, J. Electroanal. Chern.117 (1981) 309-319.
[46] M. Fleischmann, K. Korinek, D. Pletcher, The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes, J. Chem. Soc. 2 (1972) 1396-1403.
[47] D. Meyerstein, FM. Hawkridge, T. Kuwana, The spectro-electrochemical characterization of the electrocatalytic oxidation of Cu (II) ethylenediamine, J. Electroanal. Chem. 40 (1972) 377-384.
[48] H. Heli, M. Hajjizadeh, A. Jabbari, AA. Moosavi-Movahedi, Copper nanoparticles-modified carbon paste transducer as a biosensor for determination of acetylcholine, Biosens. Bioelectron.24 (2009) 2328-2333.
[49] H. Heli, M. Hajjizadeh, A. Jabbari, AA. Moosavi-Movahedi, Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles, Anal Biochem. 388 (2009) 81-90.
[50] H. Heli, M. Zarghan, A. Jabbari, A. Parsaei and A. A. Moosavi-Movahedi, Electrocatalytic oxidation of the antiviral drug acyclovir on a copper nanoparticles-modified carbon paste electrode, J. Solid State Electrochem. 14 (2010) 787-795.
[51] H. Heli, F. Faramarzi, A. Jabbari, A.Parsaei, A. A. Moosavi-Movahedi, Electrooxidation and determination of etidronate using copper nanoparticles and microparticles-modified carbon paste electrodes, J. Braz. Chem. Soc. 21 (2010) 16-24.
[53] E. Gonzalez-Fernandez, N. de-Los Santos-Alvarez, MJ. Lobo-Castanon, AJ. Miranda-Ordieres, P. Tunon-Blanco, Electrochemical Oxidation of Guanosine and Xanthosine at Physiological pH: Further Evidences of a Convergent Mechanism for the Oxidation of Purine Nucleosides, Electroanalysis 20 (2008) 833-839.
[54] O. Hammerich, JHP. Utley, L. Eberson, Organic electrochemistry, Marcel Dekker, New York (1991).
[55] J.C. Miller, JN. Miller, Statistics for analytical chemistry, Fourth ed., Ellis-Harwood, New York (1994) pp. 115.
[56] AJ. Bard, LR. Faulkner, Electrochemical methods, Wiley, New York (2001).
[57] J. Raoof, A. Omrani, R. Ojani, F. Monfared, Poly (N-methyl aniline)/ nickel modified carbon paste electrode as an efficient and cheap electrode for electrocatalytic oxidation of formaldehyde in alkaline medium, J. Electroanal. Chem. 633 (2009) 153-158.