با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

گروه شیمی، دانشکده علوم پایه، دانشگاه پیام نور، تهران، ایران

چکیده

درکار حاضر، الکترو اکسیداسیون اسید اسکوربیک و اسید فولیک، به عنوان دو ویتامین ضروری، در سطح الکترود کربن سرامیک اصلاح شده توسط پلی دوپامین و مس (Cu/PDA/CCE) بررسی شد. پلی دوپامین با استفاده از شرایط رسوبگذاری الکتروشیمیایی تهیه گردید. مشخصه یابی مقدماتی الکتروشیمیایی برای مطالعه رفتار الکترود ساخته شده برای اندازه گیری همزمان این دو مولکول زیستی انجام شد. با مطالعات ولتامتری الکترود تهیه شده، دو پیک آندی مجزا برای اسید فولیک و اسید اسکوربیک برای تشخیص همزمان ترکیبات پیدا شد. از رسم نمودارهای کالیبراسیون محدوده های خطی به ترتیب در دامنه 0.5 تا 360 میکرومولار و 0.83 تا 380 میکرومولار با حد تشخیص های به ترتیب 0.031 و 0.057 میکرومولاربرای اسیدفولیک و اسید اسکوربیک بدست آمدند. از کاربرد الکتروداصلاح شده نتایج رضایت بخشی در آنالیزنمونه ادرار حاصل شد.

کلیدواژه‌ها

[1]     F.J. Al-Shammary, K.A. Al-Rashood, N. A. A. Mian and M. S. Mian, Analytical profile of folic acid, Anal. profiles drug subst. excip., 19 (1990) 221-259.
[2]     S. Movaghgharnezhad and A. Mirabi, Advanced Nanostructure Amplified Strategy for Voltammetric Determination of Folic Acid, Int. J. Electrochem. Sci, 14(2019) 10956-10965.
[3]     D. Manoj, D. R.Kumar and J. Santhanalakshmi, Impact of CuO nanoleaves on MWCNTs/GCE nanocomposite film modified electrode for the electrochemical oxidation of folic acid, Appl. Nanosci. 2(3) (2012) 223-230.
[4]     R. Z. Stolzenberg-Solomon, S. C. Chang, M. F. Leitzmann, K. A. Johnson, C. Johnson, S. S. Buys and R. G. Ziegler, Folate intake, alcohol use, and postmenopausal breast cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial, Am. J. cli. Nutr. 83(4) (2006) 895-904.
[5]     A. A. Al-Warthan, Flow injection chemiluminometric determination of folic acid in pharmaceutical formulations, Anal. Sci. 10(6) (1994) 919-922.
[6]     R. A. Lapa, J. F. Lima, B. F. Reis, J. L. Santos and E. A. Zagatto, Photochemical-fluorimetric determination of folic acid in a multi commutated flow system, Anal. Chim. Acta. 351(1-3), (1997) 223-228.
[7]     M. W. Dong, J. Lepore and T. Tarumoto, Factors affecting the ion-pair chromatography of water-soluble vitamins, J. Chromatogr. A 442 (1988) 81-95.
[8]     R. H. F.  Cheung, P. D. Morrison, D. M. Small and P. J. Marriott, Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography, J. Chromatogr. A 1213(1) (2008) 93-99.
[9]     R. Amidžić, J. Brborić, O. Čudina and S. Vladimirov, Rp-HPLC determination of vitamins, folic acid and B12 in multivitamin tablets, J. Serb. Chem. Soc. 70 (10) (2005) 1229-1235.
[10] B. C. Nelson, K. E. Sharpless and L. C. Sander, Quantitative determination of folic acid in multivitamin/multielement tablets using liquid chromatography/tandem mass spectrometry, J. Chromatogr. A 1135(2) (2006) 203-211.
[11] M. Mazloum-Ardakani, M. A. Sheikh-Mohseni and M. Abdollahi-Alibeik, Fabrication of an electrochemical sensor based on nanostructured polyaniline doped with tungstophosphoric acid for simultaneous determination of low concentrations of norepinephrine, acetaminophen and folic acid, J. Mol. Liq. 178(2013) 63-69.
[12] A. A. Ensafi and H. Karimi-Maleh, modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator, J. Electroanal. Chem. 640(1-2) (2010) 75-83.
[13] R. Ojani, J. B. Raoof and S. Zamani, Electrocatalytic Oxidation of Folic Acid on Carbon Paste Electrode Modified by Nickel Ions Dispersed into Poly (o‐anisidine) Film, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(24), (2009) 2634-2639.
[14] W.H. Sebrell and S. Harris (Eds.), The Vitamins, vol. 1, second ed., Academic Press, New York, 1967.
[15] O. Arrigoni and M. C. D. Tullio, Ascorbic acid much more than just an antioxidant, Biochim. Biophys. Acta-Gen. Subj. 1569 (2002) 1–9.
[16] A. Tai, J. Takebayashi, A. Ueno, E. Gohda and I. Yamamoto, An isocratic HPLC method for the simultaneous determination of novel stable lipophilic ascorbic acid derivatives and their metabolite, J. Chromatogr. B 840 (2006) 38–43.
[17] A. Tai and E. Gohda, Determination of ascorbic acid and its related compounds in foods and beverages by hydrophilic interaction liquid chromatography, J. Chromatogr. B 853(2007) 214–220.
[18] P. O. Barrales, M. L. F.D. Cordova and A. M. Diaz, Indirect determination of ascorbic acid by solid-phase spectrophotometry, Anal. Chim. Acta 360 (1998) 143–152.
[19] B. Habibi and M. H. Pournaghi-Azar, Simultaneous determination of ascorbic acid, dopamine and uric acid by use of a MWCNT modified carbon-ceramic electrode and differential pulse voltammetry, Electrochim. Acta 55(19) (2010) 5492-5498.
[20] B. B.  Prasad, D. Jauhari and M. P. Tiwari, A dual-template imprinted polymer-modified carbon ceramic electrode for ultra-trace simultaneous analysis of ascorbic acid and dopamine, Biosens. Bioelectron. 50 (2013) 19-27.
[21] T.  Rohani, and M. A. Taher, A new method for electrocatalytic oxidation of ascorbic acid at the Cu (II) zeolite-modified electrode, Talanta, 78(3) (2009) 743-747.
[22] N. Chauhan, J. Narang and C. S. Pundir, Fabrication of multiwalled carbon nanotubes/polyaniline modified Au electrode for ascorbic acid determination, Analyst, 136(9) (2011) 1938-1945.
[23] R. Zhang, S. Liu, L. Wang and G. Yang, Electroanalysis of ascorbic acid using poly (bromocresol purple) film modified glassy carbon electrode, Measurement, 46(3) (2013) 1089-1093.
[24] M. Tsionsky, G. Gun, V. Glezer and O. Lev, Sol-gel-derived ceramic-carbon composite electrodes: introduction and scope of applications, Anal. Chem. 66 (1994) 1747–1753.
[25] T.  Rohani, S. Z. Mohammadi, M. A. Karimi and S. Amini, Green synthesized silver nanoparticles@ zeolite type A hybridized with carbon ceramic, AgZA-CCE, as a new nano-electrocatalyst for detection of ultra-trace amounts of rutin, Chem. Phys. Lett. 713(2018) 259-265.
[26] M. R. Majidi, K. Asadpour‐Zeynali and S. Gholizadeh, Nanobiocomposite Modified Carbon‐Ceramic Electrode Based on Nano‐TiO2‐Plant Tissue and Its Application for Electrocatalytic Oxidation of Dopamine, Electroanalysis, 22(15) (2010) 1772-1780.
[27] S. Jafari, N. Nasirizadeh and M. Dehghani, developing a highly sensitive electrochemical sensor using thiourea-imprinted polymers based on an MWCNT modified carbon ceramic electrode, J. Electroanal. Chem. 802(2017) 139-146.
[28] T. Skeika, C. R. Zuconelli, S. T. Fujiwara and C. A. Pessoa, Preparation and electrochemical characterization of a carbon ceramic electrode modified with ferrocene carboxylic acid, Sensors, 11(2) (2011) 1361-1374.