In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardebil, Iran

2 Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Ethanol (EtOH) purification is a pivotal research pursuit, with liquid-liquid extraction emerging as a significant purification methodology. This study focuses on utilizing benzene solvent for EtOH purification and investigates the liquid-liquid equilibrium (LLE) within three-component systems comprising EtOH, water, and benzene. Thermodynamic modeling of EtOH-benzene-water systems at temperatures of 20 °C, 30 °C, 40 °C, and 55 °C was conducted. In this paper, the equations used for predicting mole fraction include Non-Random Two-Liquid (NRTL), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Multilayer Perceptron Artificial Neural Network (MLP-ANN). First, the equation parameters were optimized using the particle swarm optimization (PSO) algorithm to employ the NRTL equation Experimental data was used to train the MLP-ANN and ANFIS methods, and the same experimental datasets were used for all models. These models estimated integral components across both phases, revealing effective system control across all methodologies. However, the comparative analysis indicated the superior performance of the MLP-ANN and ANFIS methods over the NRTL model. The Root Mean Square Deviation (RMSD) errors for the NRTL, MLP-ANN, and ANFIS models were 0.0253, 0.0035, and 0.0017, respectively. These results indicate that despite the low prediction error of all three methods, the NRTL equation has the highest error, and the ANFIS method has the lowest mole fraction prediction error.

Keywords

 
[1] N. Hilal, G. Yousef, and  M. Z. Anabtawi, Operating parameters effect on methanol–acetone separation by extractive distillation, Sep. Sci. Technol. 37 (2002) 3291-3303.
[2] M. F. de Figueirêdo, B. P. Guedes, J. M. M. de Araújo, L. G. S. Vasconcelos,  and R. P. Brito, Optimal design of extractive distillation columns—A systematic procedure using a process simulator, Chem. Eng. Res. Des. 89 (2011) 341-346.
[3] A. Harwardt, K. Kraemer, B. Rüngeler, and W. Marquardt, Conceptual Design of a Butyl-levulinate Reactive Distillation Process by Incremental Refinement, Chin. J. Chem. Eng. 19 (2011) 371-379.
[4] Y. Tavan, and S. H. Hosseini, A novel integrated process to break the ethanol/water azeotrope using reactive distillation – Part I: Parametric study, Sep. Purif. Technol. 118 (2013) 455-462.
[5] D. Li, Z. Gao, N. K. Vasudevan, H. Li, X. Gao, X. Li, and  L. Xi, Molecular Mechanism for Azeotrope Formation in Ethanol/Benzene Binary Mixtures through Gibbs Ensemble Monte Carlo Simulation, J. Phys. Chem. B. 124 (2020) 3371-3386.
[6] Y. Cui, X. Shi, C. Guang, Z. Zhang, C. Wang,  and C. Wang, Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater, Process Saf. Environ. Prot. 122 (2019) 1-12.
[7] L. Zhao, X. Lyu, W. Wang, J. Shan, and T. Qiu, Comparison of heterogeneous azeotropic distillation and extractive distillation methods for ternary azeotrope ethanol/toluene/water separation, Comput. Chem. Eng. 100 (2017) 27-37.
[8] N. Ramírez-Corona, A. Schramm-Flores, S. Reyes-Lombardo, and A. Jiménez-Gutiérrez, Effect of ionic liquids as entrainers on the dynamic behavior of ethanol-water extractive columns, BMC chem. eng. 1 (2019) 23.
[9] H. Renon, and J. M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE Journal. 14 (1968) 135-144.
[10] B. E. Poling, J. M. Prausnitz, and J. P. O'Connell. (2001). "The properties of gases and liquids". Mcgraw-hill New York.
[11] S. I. Sandler. (2017). "Chemical, biochemical, and engineering thermodynamics". New York: John Wiley & Sons.
[12] D. Karaboga, and E. Kaya, Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey, Artif. Intell. Rev. 52 (2019) 2263-2293.
[13] R. M. El-taweel, N. Mohamed, K. A. Alrefaey, S. Husien, A. Abdel-Aziz, A. I. Salim, N. G. Mostafa, L. A. Said, I. S. Fahim, and A. G. Radwan, A review of coagulation explaining its definition, mechanism, coagulant types, and optimization models; RSM, and ANN, Curr. Res. Green Sustain. 6 (2023) 100358.
[14] S. Kalam, U. Yousuf, S. A. Abu-Khamsin, U. B. Waheed, and R. A. Khan, An ANN model to predict oil recovery from a 5-spot waterflood of a heterogeneous reservoir, J. Pet. Eng. 210 (2022) 110012.
[15] V. d. J. da Silva Ribeiro, G. F. de Moraes Oliveira, M. Cristian, A. L. Martins, L. D. Fernandes, and M. P. Vega, Neural network based controllers for the oil well drilling process, J. Pet. Eng. 176 (2019) 573-583.
[16] B. Shelley, and S. Stephenson, The use of artificial neural networks in completion stimulation and design, Comput. Geosci. 26 (2000) 941-951.
[17] F. Nami, and F. Deyhimi, Prediction of activity coefficients at infinite dilution for organic solutes in ionic liquids by artificial neural network, J. Chem. Thermodyn. 43 (2011) 22-27.
[18] F. M. Monticeli, R. M. Neves, and H. L. Ornaghi Júnior, Using an artificial neural network (ANN) for prediction of thermal degradation from kinetics parameters of vegetable fibers, Cellulose. 28 (2021) 1961-1971.
[19] B. Karaağaç, M. İnal, and V. Deniz, Predicting optimum cure time of rubber compounds by means of ANFIS, Mater. Des. 35 (2012) 833-838.
[20] A. Bemani, A. Baghban, S. Shamshirband, A. Mosavi, P. Csiba, and A. R. Varkonyi-Koczy, Applying ANN, ANFIS, and LSSVM models for estimation of acid solvent solubility in supercritical CO2, arXiv preprint arXiv:1912.05612. (2019).
[21] M. M. Ghiasi, M. Arabloo, A. H. Mohammadi, and T. Barghi, Application of ANFIS soft computing technique in modeling the CO2 capture with MEA, DEA, and TEA aqueous solutions, Int. J. Greenhouse Gas Control. 49 (2016) 47-54.
[22] G. R. Vakili-Nezhaad, M. Mohammadzaheri, F. Mohammadi, and M. Humaid, Density and refractive index of binary ionic liquid mixtures with common cations/anions, along with ANFIS modelling, Liq. 2 (2022) 432-444.
[23] A. Tatar, A. Barati-Harooni, A. Najafi-Marghmaleki, B. Norouzi-Farimani, and A. H. Mohammadi, Predictive model based on ANFIS for estimation of thermal conductivity of carbon dioxide, J. Mol. Liq. 224 (2016) 1266-1274.
[24] J. Kennedy, and R. Eberhart, Particle swarm optimization,  Proceedings of ICNN'95, International Conference on Neural Networks. 1944 (1995) 1942-1948.
[25] A. G. Gad, Particle swarm optimization algorithm and its applications: a systematic review, Arch. Comput. Methods Eng. 29 (2022) 2531-2561.
[26] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Summakieh, and  S. Mirjalili, Particle swarm optimization: A comprehensive survey, Ieee Access. 10 (2022) 10031-10061.
[27] H. Binous, and A. Bellagi. Calculation of ternary liquid‐liquid equilibrium data using arc‐length continuation, Eng. Rep. 2 (2021) 12296.
[28] F. Pulvermüller, R. Tomasello, M.R. Henningsen-Schomers, T. Wennekers, Biological constraints on neural network models of cognitive function, Nat. Rev. Neurosci. 22 (2021) 488-502.
[29] A. D. Rasamoelina, F. Adjailia, and P. Sinčák, A review of activation function for artificial neural network,  2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), IEEE. (2020) 281-286.
[30] O. I. Abiodun, A. Jantan, A. E. Omolara, K.V. Dada, A. M. Umar, O. U. Linus, H. Arshad, A. A. Kazaure, U. Gana, and M. U. Kiru, Comprehensive review of artificial neural network applications to pattern recognition, IEEE access. 7 (2019) 158820-158846.
[31] M. Gevrey, I. Dimopoulos, and S. Lek, Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecol. Model. 160 (2003) 249-264.
[32] H. K. Ghritlahre, M. Verma, Solar air heaters performance prediction using multi-layer perceptron neural network–a systematic review, Energy Sources, Part A: Recovery, Energy Sources A: Recovery Util. Environ. Eff. (2021) 1-18.
[33] L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965) 338-353.
[34] E. Trillas, and L. Eciolaza. (2015), "Fuzzy logic", An Introductory Course for Engineering Students: Springer.
[35] Y. Lai, W.K. Abdelbasset, D. O. Bokov,  and A. S. Al-Shati, Development of ANFIS technique for estimation of CO2 solubility in amino acids and study on impact of input parameters, Arab. J. Chem. 15 (2022) 104284.
[36] M. Babanezhad, A. Masoumian, A. T. Nakhjiri, A. Marjani, and S. Shirazian, Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS), Sci. Rep. 10 (2020) 16110.
[37] M. Al-Mahasneh, M. Aljarrah, T. Rababah, and M. Alu’datt, Application of hybrid neural fuzzy system (ANFIS) in food processing and technology, Food Eng. Rev., 8 (2016) 351-366.
[38] S. F. Taylor, Mass Law Studies, 11, J. Phys. Chem. 1 (1897) 461-473.
[39] A. Skrzecz, D. G. Shaw, A. Maczynski, and A. Skrzecz, IUPAC-NIST Solubility Data Series 69. Ternary Alcohol–Hydrocarbon–Water Systems, JPCRD. 28 (1999) 983-1235.
[40] V. Brandani, A. Chianese, and M. Rossi, Ternary liquid-liquid equilibrium data for the water-ethanol-benzene system, JCED. 30 (1985) 27-29.
[41] S. Ross, and R. E. Patterson, Surface and interfacial tensions of conjugate solutions in ternary systems, JCED. 24 (1979) 111-115.
[42] C. Puentes, X. Joulia, V. Athès, and M. Esteban-Decloux, Review and Thermodynamic Modeling with NRTL Model of Vapor–Liquid Equilibria (VLE) of Aroma Compounds Highly Diluted in Ethanol–Water Mixtures at 101.3 kPa, Ind. Eng. Chem. Res. 57 (2018) 3443-3470.