In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran

2 Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran

Abstract

Amitraz removal was investigated by synthesized TiO2 from an aqueous solution. For this propose, FT-IR, XRD, UV–Vis, SEM and EDS were used to characterize the synthesized nano adsorbents and to determine the removal process. Batch adsorption studies were conducted to investigate the effect of temperature, initial Amitraz concentration, adsorbent count and contact time as important adsorption parameters. The maximum equilibrium time was found to be 15 min with 5 mg adsorbent in 35ºC at pH=7 for TiO2. All the adsorption equilibrium data were well fitted to the Freundlich isotherm model with heterogenous, multilayer, temperature depended, irreversible and spontaneously behavior. The ∆H is -4.2×103 kJ and ∆S is 15 J mol-1K-1.

Keywords

  •  

    • Korta, A. Bakkali, L.A. Berrueta, B. Gallo, F. Vicente, S. Bogdanov, Determination of amitraz and other acaricide residues in beeswax, Anal. Chim. Acta. 475 (2003) 97–103.
    • C. Carranza-Martin, M.C. Fabra, N. Urrutia Luna, N. Farnetano, J.P. Anchordoquy, J.M. Anchordoquy, S.J. Picco, C.C. Furnus, N. Nikoloff, In vitro adverse effects of amitraz on semen quality: Consequences in bovine embryo development, Theriogenology. 199 (2023) 106.
    • T. O’Neal, C.C. Brewster, J.R. Bloomquist, T.D. Anderson, Amitraz and its metabolite modulate honey bee cardiac function and tolerance to viral infection, J. Invertebr. Pathol. 149 (2017) 119–126.
    • G. Maciel, W.D.Z. Lopes, B.C. Cruz, L.V.C. Gomes, W.F.P. Teixeira, C. Buzzulini, M.A. Bichuette, G.P. Campos, G. Felippelli, V.E. Soares, G.P. de Oliveira, A.J. da Costa, Ten years later: Evaluation of the effectiveness of 12.5% amitraz against a field population of Rhipicephalus (Boophilus) microplus using field studies, artificial infestation (Stall tests) and adult immersion tests, Vet. Parasitol. 214 (2015) 233–241.
    • R. Monteiro, M.F.L. Lemos, S.C. Novais, A.M.V.M. Soares, J.L.T. Pestana, Amitraz toxicity to the midge Chironomus riparius: Life-history and biochemical responses, Chemosphere. 221 (2019) 324–332.
    • N. Jonsson, R.J. Miller, D.H. Kemp, A. Knowles, A.E. Ardila, R.G. Verrall, J.T. Rothwell, Rotation of treatments between spinosad and amitraz for the control of Rhipicephalus (Boophilus) microplus populations with amitraz resistance, Vet. Parasitol. 169 (2010) 157–164.
    • . Gao, Y. Tan, H. Guo, Simultaneous determination of amitraz, chlordimeform, formetanate and their main metabolites in human urine by high performance liquid chromatography–tandem mass spectrometry, Chromatogr. B Anal. Technol. Biomed. Life Sci. 1052 (2017) 27–33.
    • V.B. Zanoni, K. Irikura, J.A.L. Perini, G.G. Bessegato, M.A. Sandoval, R. Salazar, Recent achievements in photoelectrocatalytic degradation of pesticides, Curr. Opin. Electrochem. 35 (2022) 101020-101028.
    • Chawla, S. Garg, J. Rohilla, Á. Szamosvölgyi, A. Efremova, I. Szenti, P.P. Ingole, A. Sápi, Z. Kónya, A. Chandra, Visible LED-light driven photocatalytic degradation of organochlorine pesticides (2,4-D & 2,4-DP) by Curcuma longa mediated bismuth vanadate, J. Clean. Prod. 367 (2022) 132923-132930.
    • Tang, Y. Ao, C. Wang, P. Wang, Facile synthesis of dual Z-scheme gC3N4/Ag3PO4/AgI composite photocatalysts with enhanced performance for the degradation of a typical neonicotinoid pesticide, Appl. Catal. B Environ. 268 (2020) 118395-118405.
    • Luna, R. Alonso, V.M. Cutillas, C.M. Ferrer, M.J. Gómez-Ramos, D. Hernando, A. Valverde, J.M. Flores, A.R. Fernández-Alba, A.R. Fernández-Alba, Removal of pesticide residues from beeswax using a methanol extraction-based procedure: A pilot-scale study, Environ. Technol. Innov. 23 (2021) 101606-101616.
    • Ahamad, S.M. Alshehri, Fabrication of Ag@Srtio3/G-C3n4 Heterojunctions for H2 Production and the Degradation of Pesticides Under Visible Light, SSRN Electron. J. (2022) 4034212-403420.
    • T. Hanh, N. Le Minh Tri, D. Van Thuan, M.H. Thanh Tung, T.D. Pham, T.D. Minh, H.T. Trang, M.T. Binh, M.V. Nguyen, Monocrotophos pesticide effectively removed by novel visible light driven Cu doped ZnO photocatalyst, J. Photochem. Photobiol. A Chem. 382 (2019) 111923-111930.
    • Liu, X.L. Chen, M. Cai, R.K. Yan, H.L. Cui, H. Yang, J.J. Wang, Zn-MOFs composites loaded with silver nanoparticles are used for fluorescence sensing pesticides, Trp, EDA and photocatalytic degradation of organic dyes, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 289 (2023) 122228-122238.
    • Sudhaik, P. Raizada, S. Thakur, R. V. Saini, A.K. Saini, P. Singh, V. Kumar Thakur, V.H. Nguyen, A.A.P. Khan, A.M. Asiri, Synergistic photocatalytic mitigation of imidacloprid pesticide and antibacterial activity using carbon nanotube decorated phosphorus doped graphitic carbon nitride photocatalyst, J. Taiwan Inst. Chem. Eng. 113 (2020) 142–154.
    • Bano, S. Kaushal, P.P. Singh, A review on photocatalytic degradation of hazardous pesticides using heterojunctions, Polyhedron. 209 (2021) 115465-115473.
    • ANDRONIC, M. LELIS, A. ENESCA, S. KARAZHANOV, Photocatalytic Activity of Defective Black-Titanium Oxide Photocatalysts Towards Pesticide Degradation Under Uv/Vis Irradiation, SSRN Electron. J. (2022) 4050210-4050221.
    • Adabavazeh, A. Saljooqi, T. Shamspur, A. Mostafavi, Synthesis of polyaniline decorated with ZnO and CoMoO4 nanoparticles for enhanced photocatalytic degradation of imidacloprid pesticide under visible light, Polyhedron. 198 (2021) 115058-115068.
    • Y. Tan, W.C. Chong, S. Sethupathi, Y.L. Pang, L.C. Sim, E. Mahmoudi, Optimisation of aqueous phase low density polyethylene degradation by graphene oxide-zinc oxide photocatalysts, Chem. Eng. Res. Des. 190 (2023) 550–565.
    • Zangiabadi, A. Saljooqi, T. Shamspur, A. Mostafavi, Evaluation of GO nanosheets decorated by CuFe2O4 and CdS nanoparticles as photocatalyst for the degradation of dinoseb and imidacloprid pesticides, Ceram. Int. (2020) 466124–6128.
    • Motamedi, L. Yerushalmi, F. Haghighat, Z. Chen,Recent developments in photocatalysis of industrial effluents ։ A review and example of phenolic compounds degradation, Chemosphere. 296 (2022) 133688-133697.
    • Mashhadi kashtiban, H. Rasouli, P.Y. Sefidi, M.G. Hosseini, Polyaniline film decorated with cadmium sulfide- NrGO nanosheet heterostructure hybrid as highly efficient photoelectrocatalyst for water splitting, Mater. Sci. Semicond. Process. 141 (2022) 106425-106436.
    • Xu, H. Olvera-Vargas, F.Y.H. Teo, O. Lefebvre, A comparison of visible-light photocatalysts for solar photoelectrocatalysis coupled to solar photoelectro-Fenton: Application to the degradation of the pesticide simazine, Chemosphere. 76 (2021) 130138-130149.
    • H. Chang, M. Kumar, S.Y. Shen, Agricultural application of visible light photocatalyst, Nanostructured Mater. Vis. Light Photocatal. (2021) 467–489.
    • Sheikhpoor, A. Saljooqi, T. Shamspur, A. Mostafavi, Co-Al Layered double hydroxides decorated with CoFe2O4 nanoparticles and g-C3N4 nanosheets for efficient photocatalytic pesticide degradation, Environ. Technol. Innov. 23 (2021) 101649-101658.
    • Marta, C. Cristina, G. Carlos, L.M. Pastrana-mart, L.F. Adri, S. Marisol, F. Ana, J.L. Faria, A.M.T. Silva, M. Faraldos, A. Bahamonde, B. Tio, BARE TiO2 AND GRAPHENE OXIDE TiO2 PHOTOCATALYSTS ON THE DEGRADATION OF THE WATER MATRIX, Appl. Surf. Sci.  416 (2015) 1013–1021.
    • Shahnazi, M.R. Nabid, R. Sedghi, B. Heidari, A thermosensitive molecularly imprinted poly-NIPAM coated MWCNTs/TiO2 photocatalyst for the preferential removal of pendimethalin pesticide from wastewater, J. Photochem. Photobiol. A Chem. 402 (2020) 112802-112815.
    • Ibrahim, W. Mekprasart, W. Pecharapa, Anatase/Rutile TiO2 composite prepared via sonochemical process and their photocatalytic activity, Mater. Today Proc. 4 (2017) 6159–6165.
    • B. Anucha, I. Altin, E. Bacaksiz, V.N. Stathopoulos, (2022)Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies, Chem. Eng. J. Adv. 10 (2022) 100262-100275.
    • Zahedifar, N. Seyedi, Bare 3D-TiO2/magnetic biochar dots (3D-TiO2/BCDs MNPs): Highly efficient recyclable photocatalyst for diazinon degradation under sunlight irradiation, Phys. E Low-Dimensional Syst. Nanostructures. 139 (2022) 115151-115162.
    • Garcia-Muñoz, F. Fresno, J. Ivanez, D. Robert, N. Keller, Activity enhancement pathways in LaFeO3@TiO2 heterojunction photocatalysts for visible and solar light driven degradation of myclobutanil pesticide in water, J. Hazard. Mater. 400 (2020) 123099-123111.
    • N. Fahri, S. Ilyas, M.A. Anugrah, H. Heryanto, M. Azlan, A.T.T. Ola, R. Rahmat, N. Yudasari, D. Tahir, Bifunctional Purposes of Composite TiO2/CuO/Carbon Dots (CDs): Faster Photodegradation Pesticide Wastewater and High Performance Electromagnetic Wave Absorber, Materialia. 26 (2022) 101588-101605.
    • Saljooqi, T. Shamspur, A. Mostafavi, Synthesis of titanium nanoplate decorated by Pd and Fe3O4 nanoparticles immobilized on graphene oxide as a novel photocatalyst for degradation of parathion pesticide, Polyhedron. 179 (2020) 114371-114380.
    • Fu, S. Zhang, Z. Fu, Preparation of multicycle GO/TiO2 composite photocatalyst and study on degradation of methylene blue synthetic wastewater, Appl. Sci. 9 (2019) 9163282-9133290.
    • R. Gaeeni, M. Tohidian, M. Sasani Ghamsari, M.H. Majles Ara, Synthesis of graphene oxide-TiO2 nanocomposite as an adsorbent for the enrichment and determination of rutin, Nanomedicine J. 2 (2015) 269–272.
    • Sharma, K. Behl, S. Nigam, M. Joshi, TiO2-GO nanocomposite for photocatalysis and environmental applications: A green synthesis approach, Vacuum.156 ( 2018) 434–439.
    • Lv, Y. Li, Z. Huang, T. Li, S. Ye, D.D. Dionysiou, X. Song, Synthesis of GO/TiO2/Bi2WO6 nanocomposites with enhanced visible light photocatalytic degradation of ethylene, Appl. Catal. B Environ.  246 (2019) 303–311.
    • . Habibi Jetani, M.B. Rahmani, TiO2/GO nanocomposites: synthesis, characterization, and DSSC application, Phys. J. Plus. 135 (2020) 2173-2182.
    • M. Martins, C.G. Ferreira, A.R. Silva, B. Magalhães, M.M. Alves, L. Pereira, P.A.A.P. Marques, M. Melle-Franco, S. Lanceros-Méndez, TiO2/graphene and TiO2/graphene oxide nanocomposites for photocatalytic applications: A computer modeling and experimental study, Compos. Part B Eng. 145 (2018) 39–46.
    • A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher, U. Fatima, Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacin, Compos. Part B Eng., 175 (2019), 107120-107129.
    • Zhang, X. Wang, N. Li, J. Xia, Q. Meng, J. Ding, J. Lu, Synthesis and characterization of TiO2/graphene oxide nanocomposites for photoreduction of heavy metal ions in reverse osmosis concentrate, RSC Adv. 8 (2018) 34241–34251.
    • Razavi, M. Basij, H. Beitollahi, S. Panahandeh, Experimental and theoretical investigation of acetamiprid adsorption on nano carbons and novel PVC membrane electrode for acetamiprid measurement, Sci. Rep. 12 (2022) 16459-16465.
    • Razavi, S.M.A. Hosseini, M. Ranjbar, Production of nanosized synthetic rutile from ilmenite concentrate by sonochemical HCl and H2SO4 leaching, Iran. J. Chem. Chem. Eng. 33 (2014) 29–36.
    • M. Joni, L. Nulhakim, C. Panatarani, Characteristics of TiO2 particles prepared by simple solution method using TiCl3 precursor, J. Phys. Conf. Ser. 1080 (2018) 012042-012049.
    • Haider, Z. Jameel, S. Taha, Synthesis and Characterization of TiO2 Nanoparticles via Sol-Gel Method by Pulse Laser Ablation, Eng. Technol. J. 33 (2015) 761–771.