[1] F.J. Holler. D.A. Skoog and S.R. Crouch. Principles of instrumental analysis (7 ed.). Cengage Learning (2022).
[2] J. Perrin. Jablonski diagram (2025).
[3] D.A. Skoog. F.J. Holler and S.R. Crouch. Principles of instrumental analysis (7 ed.). Cengage Learning (2018).
[4] M.A. Green. Third generation photovoltaics: Advanced solar energy conversion. Springer Science & Business Media (2006).
[5] M. Hosenuzzaman. N.A. Rahim. J. Selvaraj. M. Hasanuzzaman. A.B.M.A. Malek and A. Nahar. Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation. Renew. Sust. Energ. Rev. 41 (2015) 284-297.
[6] T.M. Razykov. C.S. Ferekides. D. Morel. E. Stefanakos. H.S. Ullal and H.M. Upadhyaya. Solar photovoltaic electricity: Current status and future prospects. Sol. Energy 85 (2011) 1580-1608.
[7] M. Grätzel. Dye-sensitized solar cells. J. Photochem. Photobiol. C 4 (2003) 145-153.
[8] X. Hou. K. Aitola and P.D. Lund. TiO₂ nanotubes for dye-sensitized solar cells—A review. Energy Sci. Eng. 9 (2021) 921-937.
[9] K. Patil. S. Rashidi. H. Wang and W. Wei. A review on photovoltaic cells and applications. Int. J. Photoenergy (2019) 1812879.
[10] S. Mathew. A. Yella. P. Gao. R. Humphry-Baker. B.F.E. Curchod. N. Ashari-Astani and M. Grätzel. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6 (2014) 242-247.
[11] B. O’Regan and M. Grätzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO₂ films. Nature 353 (1991) 737-740.
[12] N. Heo. Y. Jun and J.H. Park. Dye molecules in electrolytes: New approach for suppression of dye-desorption in dye-sensitized solar cells. Sci. Rep. 3 (2013) 1712.
[13] D. Kumar. A short review on the advancement in the development of TiO₂ and ZnO based photo-anodes for the application of dye-sensitized solar cells (DSSCs). Eng. Res. Express 3 (2021) 042004.
[14] M.K. Nazeeruddin. A. Kay. I. Rodicio. R. Humphry-Baker. E. Müller. P. Liska and M. Grätzel. Conversion of light to electricity by cis-X₂bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers. J. Am. Chem. Soc. 115 (2001) 6382-6390.
[15] A. Hagfeldt. G. Boschloo. L. Sun. L. Kloo and H. Pettersson. Dye-sensitized solar cells. Chem. Rev. 110 (2010) 6595-6663.
[16] B.C. O’Regan. J.R. Durrant. P.M. Sommeling and N.J. Bakker. Influence of the TiCl₄ treatment on nanocrystalline TiO₂ films in dye-sensitized solar cells. J. Phys. Chem. C 111 (2007) 14001-14010.
[17] K. Hara and H. Arakawa. Dye-sensitized solar cells. In Encyclopedia of Nanoscience and Nanotechnology 11 (2003) 1-30.
[18] V. Rondán-Gómez. I. Montoya De Los Santos. D. Seuret-Jiménez. F. Ayala-Mató. A. Zamudio-Lara. T. Robles-Bonilla and M. Courel. Recent advances in dye-sensitized solar cells. Appl. Phys. A 125 (2019) 836.
[19] L. Zhang and J.M. Cole. Anchoring groups for dye-sensitized solar cells. ACS Appl. Mater. Interfaces 7 (2015) 3427-3455.
[20] M. Hosseini and S.M. Khoshfetrat. Sensitive spectrophotometric determination of U(VI) ion at trace level in water samples: A simple and rapid homogeneous solvent-based/in-situ solvent formation microextraction based on synthesized task-specific ionic liquid. J. Solut. Chem. 53 (2024) 1443-1461.
[21] M. Hosseini and S.M. Khoshfetrat. Application of a new synthesized ionic liquid based on pyrrolidinium for microextraction of trace amounts of Cr(VI) ions in real water and wastewater samples. J. Water Chem. Technol. 45 (2023) 256-269.
[22] M. Hosseini. A. Rezaei and M. Soleymani. Homogeneous solvent-based microextraction method (HSBME) using a task-specific ionic liquid and its application to the spectrophotometric determination of fluoxetine as pharmaceutical pollutant in real water and urine samples. Chem. Pap. 78 (2024) 8195-8210.
[23] M. Moradzaman and M.R. Mohammadi. Development of an aqueous TiO₂ paste in terms of morphological manipulation of nanostructured photoanode electrode of dye-sensitized solar cells. J. Sol-Gel Sci. Technol. 75 (2015) 447-459.
[24] Z.S. Wang. T. Yamaguchi. H. Sugihara and H. Arakawa. Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO₂ films. Langmuir 21 (2005) 4272-4276.
[25] T.H. Tsai. C.Y. Chen. C.T. Li. C.P. Lee. R. Vittal and K.C. Ho. Dye-sensitized solar cells with optimal gel electrolyte using the Taguchi design method. Int. J. Photoenergy (2013) 617126.
[26] V. More. V. Shivade and P. Bhargava. Effect of cleaning process of substrate on the efficiency of the DSSC. Trans. Indian Ceram. Soc. 75 (2016) 59-62.
[27] F. Momeni and M. Kashfi Tabrizi. Investigation of the effect of titanium dioxide (TiO₂) deposition method on the performance of dye-sensitized solar cells (DSSC). New Process. Mater. Eng. 9 (2015) 5-12.
[28] J. Cai. Z. Chen. J. Li. Y. Wang. D. Xiang. J. Zhang. H. Li and H. Ji. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO₂ slurry-based photoanode. AIP Adv. 5 (2015) 027118