In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.

2 Department of Chemistry, Dashtestan Branch, Islamic Azad University, Dashtestan, Iran.

10.30473/ijac.2025.75897.1326

Abstract

In this study, a description of spectrofluorometer method for the measure of epinephrine (EP) drug in urine and blood samples using lead sulfide (PbS) quantum dots via glutathione nanocomposite as a sensor using a resonance Rayleigh scattering (RRS) technique. The sensor was characterized using FTIR, XRD, SEM, and TEM. The scattering intensity (∆IRRS) signal was detected by a fluorescence detector at λ(ex) = 325 nm. Under the optimum conditions, the calibration plot is linear in the (EP) drug concentration range of (0.050‒200.0 ng L-1). The standard deviations of (1.2 %), detection limit (LOD) of the method (0.015 ng L-1) and quantification (LOQ) of the method (0.044 ng L-1) in time 50 s, 325 nm for sensor level response PbS QDs-glutathione nanocomposite with (96 %) confidence evaluated. Moreover, a PbS QDs-glutathione nanocomposite sensor with RRS technique for the analysis of (EP) drug in urine and blood samples with high % recoveries (94.0 -99.2 %), low % RSD values (< 3 %) was used. This method offers a reliable approach for detecting various drugs in clinical and pharmaceutical settings.

Keywords

[1] F.H. Cincotto, Th. C. Canevari, A.M. CamposR. Landers, S.A.S. Machado, Simultaneous determination of epinephrine and dopamine by electrochemical reduction on the hybrid material SiO2/graphene oxide decorated with Ag nanoparticles, Analyst 139 (2014) 4634-4640. https://doi.org/10.1039/C4AN00580E
[2] G.D. Perkins, C. Ji, C.D. Deakin, T. Quinn, J.P. Nolan, C. Scomparin, S. Regan, J. Long, A. Slowther, H. Pocock, J.I.M. Black, F. Moore, R.T. Fothergill, N. Rees, L. Oshea, M. Docherty, I. Gunson, K. Han, K. Charlton, J. Finn, S. Petrou, N. Stallard, S. Gates, R. Lall, A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest, New Engl. J. Med. 379(8) (2018) 711-721. https://doi.org/10.1056/nejmoa1806842
[3] A. Ekhtesasi, M.R. Shishehbore, Sensitive Determination of Epinephrine Using Kinetic Spectrophotometric Method, Orient. J. Chem. 32(1) (2016) 467-472. https://doi.org/10.13005/ojc/320153
[4] E. Akyilmaz, E. Canbay, E. Dinçkaya, C. Güvenç, I. Yaşa, E. Bayram, Simultaneous Determination of Epinephrine and Dopamine by Using Candida tropicalis Yeast Cells Immobilized in a Carbon Paste Electrode Modified with Single Wall Carbon Nanotube, Electroanalysis 29(8) (2017) 1976-1984. https://doi.org/10.1002/elan.201700125
[5] C.N. Pecheu, V.K. Tchieda, K.Y. Tajeu, S.L.Z. Jiokeng, A. Lesch, I.K. Tonle, E. Ngameni, C. Janiak, Electrochemical Determination of Epinephrine in Pharmaceutical Preparation Using Laponite Clay-Modified Graphene Inkjet-Printed Electrode, Molecules 28 (2023) 5487. https://doi.org/10.3390/molecules28145487
[6] I.M. Apetrei, C. Apetrei, Biosensor based on tyrosinase immobilized on a single-walled carbon nanotube-modified glassy carbon electrode for detection of epinephrine, Int. J. Nanomedicine 8 (2013) 4391-4398. https://doi.org/10.2147/IJN.S52760
[7] T. Wang, X. Ma, Y. Xing, S. Sun, H. Zhang, T. Stürmer, B. Wan, X. Li, H. Tang, L. Jiao, S. Zhai, Use of Epinephrine in Patients with Drug-Induced Anaphylaxis: An Analysis of the Beijing Pharmacovigilance Database, Int. Arch. Allergy Immunol. 173 (2017) 51-60. https://doi.org/10.1159/000475498
[8] M. Hosseini, A. Rezaei, M. Soleymani, Homogeneous solvent‑based microextraction method (HSBME) using a task‑speciic ionic liquid and its application to the spectrophotometric determination of luoxetine as pharmaceutical pollutant in real water and urine samples, Chem. Pap. 78 (2024) 78195-8210. https://doi.org/10.1007/s11696-024-03660-7
[9] M. Hosseini, High-performance ionic liquid-based microextraction method (ILBME) for the trace determination of paroxetine as a pharmaceutical pollutant in environmental and biological samples, Anal. Methods 16 (2024) 8457-8470. https://doi.org/10.1039/D4AY01668H
[10] M. Hosseini, K. Gallardo, A novel system based on task-specific pyrrolinium-based ionic liquid and homogeneous in-situ solvent formation microextraction of sertraline in real water and urine samples, New J. Chem. 49 (2025) 13772-13784. https://doi.org/10.1039/D5NJ01661D
 [11] S. Kongkiatpaiboon, N. Duangdee, S. Chewchinda, O. Poachanukoon, K. Amnuaypattanapon, Development and validation of stability indicating HPLC method for determination of adrenaline tartrate, J. King Saud Univ – Sci. 31(1) (2017) 48-51. https://doi.org/10.1016/j.jksus.2017.05.016
[12] J. Du, L. Shen, J. Lu, Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material, Anal. Chim. Acta 489 (2003) 183-189. https://doi.org/10.1016/S0003-2670(03)00717-7
[13] M. Mazloum-Ardakani, F. Alvansaz-Yazdi, F. Hosseini-Dokht, A. Khoshroo, Fabrication of an Electrochemical Sensor for Determination of Epinephrine Using a Glassy Carbon Electrode Modified with Catechol, Anal. Bioanal. Chem. Res. 10(4) (2023) 387-394. https://doi.org/10.22036/abcr.2023.386655.1889
[14] S.A.H. Al-Ameri, Spectrophotometric determination of adrenaline in pharmaceutical preparations, Arabian J. Chem. 181 (2016) S1000-1004. https://doi.org/10.1016/j.arabjc.2011.10.001
[15] M. Pargari, F. Marahel, B. Mombeni Goodajdar, Applying Kinetic Spectrophotometric Method and Neural Network Model for the Quantity of Epinephrine Drug by Starch-capped AgNPs Sensor in Blood and Urine Samples, J. Anal. Chem.  77(4) (2022) 482-494. https://doi.org/10.1134/S1061934822040074
[16] S. Menon, S. Jesny, U. Sivasankaran, KG. Kumar, Fluorometric determination of epinephrine: A green approach, Anal. Sci. 32 (2016) 999–1001. https://doi.org/10.2116/analsci.32.999
[17] S. Baluta, K. Malecha, A. Swist, J. Cabaj, Fluorescence Sensing Platforms for Epinephrine Detection Based on Low Temperature Cofired Ceramics, Sensors 20(5) (2020) 1429.  https://doi.org/10.3390/s20051429
[18] Y. Lin, Q. Zhou, D. Tang, R. Niessner, H. Yang, D. Knopp, Silver Nanolabels-Assisted Ion-Exchange Reaction with CdTe Quantum Dots Mediated Exciton Trapping for Signal-On Photoelectrochemical Immunoassay of Mycotoxins, Anal. Chem. 88 (2016) 7858–7866.  https://doi.org/10.1021/acs.analchem.6b02124
[19] Q. Xu, J. Dong, G. Yan, R. Yi, X. Yang, Synthesis of N-Doped Graphene Quantum Dots from Cellulose and Construction of a Fluorescent Probe for 6Mercaptopurin Quantitative Detection, Materials 17 (2024) 5852. https://doi.org/10.3390/ma17235852
[20] A. Ghafarloo, R.F. Sabzi, N. Samadi, H. Hamishehkar, Spectrofluorimetric Determination of Hydrochlorothiazide by a Carbon Dots-Based Probe via Inner Filtering Effect and Resonance Rayleigh Scattering, J. Braz. Chem. Soc. 33(4) (2022) 361-368. https://doi.org/10.21577/0103-5053.20210155
[21] H.  Salem, F.A. Abo Elsoud, D. Heshmat, A. Magdy, Resonance Rayleigh scattering technique-using erythrosine B, as novel spectrofluorimetric method for determination of anticancer agent nilotinib: Application for capsules and human plasma, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 251 (2021) 119428. https://doi.org/10.1016/j.saa.2021.119428
[22] V. Kiran, K. Harini, A. Thirumalai, K. Girigoswami, A. Girigoswami, Nanostructured carbon dots as ratiometric fluorescent rulers for heavy metal detection, Int. J. Nano Dimens. 15(4) (2024) 152426. https://doi.org/10.57647/j.ijnd.2024.1504.26
[23] A. Amouri, F. Marahel, A. Geramizadegan, M.R. Asghariganjeh, Resonance Rayleigh Scattering and Spectrofluorimetric Sensing of 6-Mercaptopurine using PbS Quantum Dot–Glutathione Nanocomposites, J. Anal. Chem. 80(7) (2025) 1203-1211. https://doi.org/10.1134/S1061934825700509
[24] Sh. Davoudi, F. Marahel, Determination of sulfacetamide in blood and urine using PBS quantum dots sensor and artificial neural networks, J. Anal. Chem. 77(11) (2022) 1448-1457. https://doi.org/10.1134/S1061934822110041
[25] Z. Qiu, J. Shu, Y. He, Z. Lin, K. Zhang, Sh. Lv, D. Tang, CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization, Biosens. Bioelectron. 87 (2017) 18-24. https://doi.org/10.1016/j.bios.2016.08.003
[26] P. Jamalipour, N. Choobkar, M. Abrishamkar, E. Pournamdari, Designed a Fluorescent Method by Using PbS with Gelatin via Quantum Dots for the Determination of Amount Insecticide toxic Fenpyroximate in Water Samples, Iran. J. Anal. Chem. 9(2) (2022) 28-37. https://doi.org/10.30473/ijac.2022.64566.1239.
[27] E. Pournamdari, L. Niknam, Design of a fluorescent method by using ZnS QDs-gelatin nanocomposite for sensing toxic 2-mercaptobenzothiazole in water samples, J. Sulfur Chem. 45(3) (2024) 408-421. https://doi.org/10.1080/17415993.2023.2297708
[28] T. Blachowicz, A. Ehrmann, Recent Developments of Solar Cells from PbS Colloidal Quantum Dots, Appl. Sci. 10 (2020) 1743. https://doi.org/10.3390/app10051743
[29] F. Marahel, L. Niknam, Enhanced Fluorescent Sensing Probe via PbS Quantum Dots functionalized with Gelatin for Sensitive Determination of toxic Bentazon in Water Samples, Drug Chem. Toxicol. 45(6) (2022) 2545-2553.  https://doi.org/10.1080/01480545.2021.1963761
[30] X. Chen, Z. Guo, P.J.H. Miao, One-pot synthesis of GSH-Capped CdTe quantum dots with excellent biocompatibility for direct cell imaging, Heliyon 4(3) (2018) e00576.  https://doi.org/10.1016/j.heliyon.2018.e00576
[31] W. Metwly, E. Fadl, M. Soliman, Sh. Ebrahim, S.A. Sabra, Glutathione‑Capped ZnS Quantum Dots‑Urease Conjugate as a Highly Sensitive Urea Probe, J. Inorg. Organomet. Polym. Mater. 33 (2023) 1388-1399. https://doi.org/10.1007/s10904-023-02592-1
[32] A. Amouri, F. Marahel, A. Geramizadegan, M.R. Asghariganjeh, Design of a resonance Rayleigh scattering technique and spectrofluorimetric method using GSH-capped PbS quantum dots for sensing nortriptyline in urine and blood samples, Spectrosc. Lett. 58 (2025) 1-14. https://doi.org/10.1080/00387010.2025.2554233
[33] Sh. Bouroumand, F. Marahel, F. Khazali, Determining the Amount of Metronidazole Drug in Blood and Urine Samples with the help of PbS Sensor functionalized With Gelatin as a Fluorescence- Enhanced Probe, Iran. J. Anal. Chem. 7(2) (2020) 47-56. https://doi.org/10.30473/ijac.2021.56671.1175
[34] E. Pournamdari, L. Niknam, Resonance Rayleigh Scattering Technique-using Chitosan-capped gold Nanoparticles, approaches Spectrofluorimetric Method for Determination of Bentazone Residual in Water Samples, J. Environ. Sci. Health B. 58(10) (2023) 628-636.  https://doi.org/10.1080/03601234.2023.2262348 
[35] A. Hatamie, F. Marahel, A. Sharifat, Green synthesis of graphitic carbon nitride nanosheet (g-C3N4) and using it as a label-free fluorosensor for detection of metronidazole via quenching of the fluorescence, Talanta 176 (2018) 518-527. https://doi.org/10.1016/j.talanta.2017.08.059
[36] P. Jamalipour, N. Choobkar, M. Abrishamkar, E. Pournamdari, Design of fluorescent method for sensing toxic diazinon in water samples using PbS quantum dots-based gelatin, J. Environ. Sci. Health B. 57(9) (2022) 720-728.  https://doi.org/10.1080/03601234.2022.2103936
[37] F. Marahel, L. Niknam, E. Pournamdari, A. Geramizadegan, Application of electrochemical sensor based on nanosheets G‑C3N4/CPE by square wave anodic stripping voltammetry method to measure residual amounts of toxic bentazon in water samples, J. Iran. Chem. Soc. 19(8) (2022) 3377-3385. https://doi.org/10.1007/s13738-022-02531-w
[38] G. Cai, Z. Yu, R. Ren, D. Tang, Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS QDs/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen, ACS Sensors 3(3) (2018) 632-639.  https://doi.org/10.1021/acssensors.7b00899