[1] J. Gao, Z. Tian, X. Yang, Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends, 14, 72-73 (2020).
https://doi.org/10.5582/bst.2020.01047
[2] M. K. Gupta, S. Vemula, R. Donde, G. Gouda, L. Behera, R. Vadde, In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1-11 (2020).
https://doi.org/10.1080/07391102.2020.1751300
[3] F. Pan, T.Ye, P. Sun, S. Gui, B. Liang, L. Li, D. Zheng, J. Wang, R. L. Hesketh, L. Yang, Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology (2020).
[4] R. S. Joshi, S.S. Jagdale, S.B. Bansode, S.S. Shankar, M. B. TellisV. K. Pandya, A. Chugh, A. P. Giri, M. J. Kulkarni, Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure and Dynamics, 1-16 (2020).
[5] R. Sabino-Silva, A. C. G. Jardim, W. L. Siqueira, Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis, Clinical oral investigations, 24, 1619-1621 (2020).
https://doi.org/10.1007/s00784-020-03248-x
[6] Y. Wu, Y. C. Lu, M. Jacobs, S. Pradhan, K. Kapse, L. Zhao, N. Niforatos-Andescavage, G. Vezina, A. J. du Plessis, C. Limperopoulos, Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation. JAMA network open 3, e1919940-e1919940 (2020).
[8] A. D. Elmezayen, A. Al-Obaidi, A. T. Sahin, K. Yelekçi, Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes, Journal of Biomolecular Structure and Dynamics, 1-13 (2020).
https://doi.org/10.1080/07391102.2020.1758791
[9] D. Zhou, S. M. Dai, Q. Tong, COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, Journal of Antimicrobial Chemotherapy 75, 1667-1670 (2020)
[10] T. Kobayashi, S. M. Jung, N. M. Linton, R. Kinoshita, K. Hayashi, T. Miyama, A. Anzai, Y., Yang, B. Yuan, B., A. R. Akhmetzhanov, Communicating the risk of death from novel coronavirus disease (COVID-19). Multidisciplinary Digital Publishing Institute (2020).
https://doi.org/10.3390/jcm9020580
[11] H. Shi, X. Han, N. Jiang, Y. Cao, O. Alwalid, J. Gu, Y. Fan, C. Zheng, Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet infectious diseases 20, 425-434 (2020)
[12] C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang, P. R. Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents 55, 105924 (2020).
https://doi.org/10.1016/j.ijantimicag.2020.105924
[13] K. Dong, S. Hu, J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug discoveries & therapeutics 14, 58-60 (2020).
[14] T. Y. Ling, M. D. Kuo, C. L. Li, L. Y. Alice, Y. H. Huang, T. J. Wu, Y. C. Lin, S. H. Chen, J. Yu, Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proceedings of the National Academy of Sciences 103, 9530-9535 (2006).
[15] V. K. Rao, S. S. Reddy, K. R. Babu, K. H. Kumar, S. K. Ghosh, C. N. Raju, Synthesis and cytotoxicity evaluation of phosphorylated derivatives of ribavirin, Journal of the Korean Chemical Society 55, 952-959 (2011).
[16] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, M. Parker, D. Bonsall, C. Fraser, Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368 (2020).
[17] R. J. Khan, R. K. Jha, G. M. Amera, M. Jain, E. Singh, A. Pathak, R. P. Singh, J. Muthukumaran, A. K. Singh, Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 1-14 (2020).
[18] W. Zhang, Y. Zhao, F. Zhang, Q. Wang, T. Li, Z. Liu, J., Wang, Y. Qin, X. Zhang, X. Yan, The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clinical Immunology 214, 108393 (2020).
[19] G. Lu, Y. Hu, Q. Wang, J. Qi, F. Gao, Y. Li, Y. Zhang, W. Zhang, Y. Yuan, J. Bao, Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227-231 (2013).
[20] C. I. Paules, H. D. Marston, A. S. Fauci, Coronavirus infections—more than just the common cold, Jama 323, 707-708 (2020).
[21] Z. Song, Y. Xu, L. Bao, Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han, C. Qin, From SARS to MERS, thrusting coronaviruses into the spotlight. viruses 11, 59 (2019).
https://doi.org/10.3390/v11010059
[22] I. T. Yu, Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung, T. Ho, Evidence of airborne transmission of the severe acute respiratory syndrome virus. New England Journal of Medicine 350, 1731-1739 (2004).
[23] P. A. Boley, M. A. Alhamo, G. Lossie, K. K. Yadav, M. Vasquez-Lee, M., L. J. Saif, S. P. Kenney, Porcine deltacoronavirus infection and transmission in poultry, United States. Emerging infectious diseases 26, 255 (2020).
[24] T. Li, Y. Cui, B. Wu, Molecular dynamics investigations of structural and functional changes in Bcl-2 induced by the novel antagonist BDA-366, Journal of Biomolecular Structure and Dynamics 37, 2527-2537 (2018).
[25] D. A. Schwartz, A. L. Graham, Potential maternal and infant outcomes from (Wuhan) coronavirus 2019-nCoV infecting pregnant women: lessons from SARS, MERS, and other human coronavirus infections. Viruses 12, 194 (2020).
[26] E. I. Azhar, D.S. Hui, Z. A. Memish, C. Drosten, A. Zumla, The middle east respiratory syndrome (MERS). Infectious Disease Clinics 33, 891-905 (2019).
[28] M. Ebrahimi, T. Khayamian, Interactions of G-quadruplex DNA binding site with berberine derivatives and construct a structure-based QSAR using docking descriptors. Medicinal Chemistry Research 23, 1327-1339 (2014).
[30] E. Estrada, G. Patlewicz, E. Uriarte, From molecular graphs to drugs. A review on the use of topological indices in drug design and discovery (2003).
[31] G. Bitencourt-Ferreira, W. F. de Azevedo, Molegro virtual docker for docking. Docking Screens for Drug Discovery. Springer, pp. 149-167 (2019).
[32] A. W. Schüttelkopf, D. M. Van Aalten, PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography 60, 1355-1363 (2004).
[33] D. M.Van Aalten, R. Bywater, J. B. Findlay, M. Hendlich, R.W. Hooft, G. Vriend, PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of computer-aided molecular design 10, 255-262 (1996).
https://doi.org/10.1007/BF00355047
[34] S. Gharaghani, T. Khayamian, M. Ebrahimi, Multitarget fragment‐based design of novel inhibitors for AChE and SSAO/VAP‐1 enzymes. Journal of Chemometrics 27, 297-305 (2013).
https://doi.org/10.1002/cem.2556
[35] I. Halperin, B. Ma, H. Wolfson, R. Nussinov, Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function, and Bioinformatics 47, 409-443 (2002).
[36] D. Hecht, M. Cheung, G. B. Fogel, Docking scores and QSAR using evolved neural networks for the pan-inhibition of wild-type and mutant PfDHFR by cycloguanil derivativesIEEE Congress on Evolutionary Computation. IEEE, 262-269 (2009).
[37] J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. Selick, J R. Grove, MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screening. Journal of pharmaceutical sciences 88, 28-33 (1999).