In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

1 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of advanced Technology, Kerman, Iran

2 Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran

3 Department of Nanotechnology, Graduate University of Advanced Technology, Kerman, Iran

10.30473/ijac.2026.77143.1338

Abstract

A novel coronavirus (CoV), SARS-CoV-2 surfaced in late 2019 in Wuhan, China and spread across whole world. We started a study on COVID-19 and several clinical inhibitors, firstly we did molecular simulation on COVID-19 by Gromacs tools. Then simulated conformation was docked with suggested drugs for confirmation docking. The molecular docking results were similar to X-ray crystallography results in protein data bank and the analyses were confirmed by this method. The resulting conformation of the reported drugs with the COVID-19 was used for docking analyses. Furthermore, to study receptor conformation stability, a second MD simulation on complex was performed in an aqueous environment. RMSD for complex showed that the COVID19 conformation did not change in the presence of the suggested drugs.
The results of docking showed that estimated free energy of binding, final intermolecular energy and hydrogen bond play an important role in interaction between suggested drugs and COVID-19. The results emerging docking showed that Sofosbuvir, vitamin D and 2aurintricarboxylic acid have been potential to be applied as new COVID-19 anti corona virus drugs.

Keywords

[1] J. Gao, Z. Tian, X. Yang, Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies, Biosci. Trends, 14, 72-73 (2020). https://doi.org/10.5582/bst.2020.01047
[2] M. K. Gupta, S. Vemula, R. Donde, G. Gouda, L. Behera, R. Vadde, In-silico approaches to detect inhibitors of the human severe acute respiratory syndrome coronavirus envelope protein ion channel. Journal of Biomolecular Structure and Dynamics, 1-11 (2020). https://doi.org/10.1080/07391102.2020.1751300
[3] F. Pan, T.Ye, P. Sun, S. Gui, B. Liang, L. Li, D. Zheng, J. Wang, R. L. Hesketh, L. Yang, Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiology (2020).
https://doi.org/10.1148/radiol.2020200370
[4] R. S. Joshi, S.S. Jagdale, S.B. Bansode, S.S.  Shankar, M. B. TellisV. K. Pandya, A. Chugh, A. P. Giri, M. J. Kulkarni, Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. Journal of Biomolecular Structure and Dynamics, 1-16 (2020).
[5] R. Sabino-Silva, A. C. G. Jardim, W. L. Siqueira, Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis, Clinical oral investigations, 24, 1619-1621 (2020). https://doi.org/10.1007/s00784-020-03248-x
[6] Y. Wu, Y. C. Lu, M. Jacobs, S. Pradhan, K. Kapse, L. Zhao, N. Niforatos-Andescavage, G. Vezina, A. J. du Plessis, C. Limperopoulos, Association of prenatal maternal psychological distress with fetal brain growth, metabolism, and cortical maturation. JAMA network open 3, e1919940-e1919940 (2020).
[7] A. A. Elfiky, E. B. Azzam, Novel guanosine derivatives against MERS CoV polymerase: An in silico perspective. Journal of Biomolecular Structure and Dynamics, 1-9 (2020). https://doi.org/10.1080/07391102.2020.1758789
[8] A. D. Elmezayen, A. Al-Obaidi, A. T. Sahin, K. Yelekçi, Drug repurposing for coronavirus (COVID-19): in silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes, Journal of Biomolecular Structure and Dynamics, 1-13 (2020). https://doi.org/10.1080/07391102.2020.1758791
[9] D. Zhou, S. M.  Dai, Q. Tong, COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression, Journal of Antimicrobial Chemotherapy 75, 1667-1670 (2020)
[10] T. Kobayashi, S. M. Jung, N. M.  Linton, R.  Kinoshita, K. Hayashi, T. Miyama, A. Anzai, Y., Yang, B. Yuan, B., A. R. Akhmetzhanov, Communicating the risk of death from novel coronavirus disease (COVID-19). Multidisciplinary Digital Publishing Institute (2020). https://doi.org/10.3390/jcm9020580
[11] H. Shi,  X. Han, N. Jiang, Y. Cao, O. Alwalid, J. Gu, Y. Fan, C. Zheng, Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet infectious diseases 20, 425-434 (2020)
[12] C. C. Lai, T. P. Shih, W. C. Ko, H. J. Tang, P. R. Hsueh,  Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. International journal of antimicrobial agents 55, 105924 (2020). https://doi.org/10.1016/j.ijantimicag.2020.105924
[13] K. Dong, S. Hu, J. Gao, Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug discoveries & therapeutics 14, 58-60 (2020).
[14] T. Y. Ling, M. D. Kuo, C. L. Li, L. Y. Alice, Y. H. Huang, T. J. Wu, Y. C. Lin, S. H. Chen, J. Yu, Identification of pulmonary Oct-4+ stem/progenitor cells and demonstration of their susceptibility to SARS coronavirus (SARS-CoV) infection in vitro. Proceedings of the National Academy of Sciences 103, 9530-9535 (2006).
https://doi.org/10.1073/pnas.0510232103
[15] V. K. Rao, S. S. Reddy, K. R. Babu, K. H. Kumar, S. K. Ghosh, C. N. Raju, Synthesis and cytotoxicity evaluation of phosphorylated derivatives of ribavirin, Journal of the Korean Chemical Society 55, 952-959 (2011).
[16] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, M. Parker, D. Bonsall, C. Fraser, Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368 (2020).
[17] R. J. Khan, R. K. Jha, G. M. Amera, M. Jain, E. Singh, A. Pathak, R. P. Singh, J. Muthukumaran, A. K. Singh, Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 1-14 (2020).
[18] W. Zhang, Y. Zhao, F. Zhang, Q. Wang, T. Li, Z. Liu, J., Wang, Y. Qin, X. Zhang, X. Yan, The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clinical Immunology 214, 108393 (2020).
[19] G. Lu, Y. Hu, Q. Wang, J. Qi, F. Gao, Y. Li, Y. Zhang, W. Zhang, Y. Yuan, J. Bao, Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227-231 (2013).
[20] C. I. Paules, H. D. Marston, A. S. Fauci, Coronavirus infections—more than just the common cold, Jama 323, 707-708 (2020).
[21] Z. Song, Y. Xu, L. Bao, Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han, C. Qin, From SARS to MERS, thrusting coronaviruses into the spotlight. viruses 11, 59 (2019). https://doi.org/10.3390/v11010059
[22] I. T. Yu, Y. Li, T. W. Wong, W. Tam, A. T. Chan, J. H. Lee, D. Y. Leung, T. Ho, Evidence of airborne transmission of the severe acute respiratory syndrome virus. New England Journal of Medicine 350, 1731-1739 (2004).
[23] P. A. Boley, M. A. Alhamo, G. Lossie, K. K. Yadav, M. Vasquez-Lee, M., L. J. Saif, S. P. Kenney, Porcine deltacoronavirus infection and transmission in poultry, United States. Emerging infectious diseases 26, 255 (2020).
https://doi.org/10.3201/eid2602.190346
[24] T. Li, Y. Cui, B. Wu, Molecular dynamics investigations of structural and functional changes in Bcl-2 induced by the novel antagonist BDA-366, Journal of Biomolecular Structure and Dynamics 37, 2527-2537 (2018).
[25] D. A. Schwartz, A. L. Graham, Potential maternal and infant outcomes from (Wuhan) coronavirus 2019-nCoV infecting pregnant women: lessons from SARS, MERS, and other human coronavirus infections. Viruses 12, 194 (2020).
[26] E. I. Azhar, D.S. Hui, Z. A. Memish, C. Drosten, A. Zumla, The middle east respiratory syndrome (MERS). Infectious Disease Clinics 33, 891-905 (2019).
[27] H. J.Berendsen, D. van der Spoel, R.van Drunen, GROMACS: a message-passing parallel molecular dynamics implementation. Computer physics communications 91, 43-56 (1995). https://doi.org/10.1016/0010-4655(95)00042-E
[28] M. Ebrahimi, T. Khayamian, Interactions of G-quadruplex DNA binding site with berberine derivatives and construct a structure-based QSAR using docking descriptors. Medicinal Chemistry Research 23, 1327-1339 (2014).
[29] J. D. Durrant, J. A. McCammon, BINANA: a novel algorithm for ligand-binding characterization. Journal of Molecular Graphics and Modelling 29, 888-893 (2011). https://doi.org/10.1016/j.jmgm.2011.01.004
[30] E. Estrada, G. Patlewicz, E. Uriarte, From molecular graphs to drugs. A review on the use of topological indices in drug design and discovery (2003).
[31] G. Bitencourt-Ferreira, W. F. de Azevedo, Molegro virtual docker for docking. Docking Screens for Drug Discovery. Springer, pp. 149-167 (2019).
[32] A. W. Schüttelkopf, D. M. Van Aalten, PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography 60, 1355-1363 (2004).
[33] D. M.Van Aalten, R. Bywater, J. B. Findlay, M. Hendlich, R.W. Hooft, G. Vriend, PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. Journal of computer-aided molecular design 10, 255-262 (1996). https://doi.org/10.1007/BF00355047
[34] S. Gharaghani, T. Khayamian, M. Ebrahimi,  Multitarget fragment‐based design of novel inhibitors for AChE and SSAO/VAP‐1 enzymes. Journal of Chemometrics 27, 297-305 (2013). https://doi.org/10.1002/cem.2556
[35] I. Halperin, B. Ma, H. Wolfson, R. Nussinov, Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function, and Bioinformatics 47, 409-443 (2002).
[36] D. Hecht, M. Cheung, G. B. Fogel, Docking scores and QSAR using evolved neural networks for the pan-inhibition of wild-type and mutant PfDHFR by cycloguanil derivativesIEEE Congress on Evolutionary Computation. IEEE, 262-269 (2009).
https://doi.org/10.1109/CEC.2009.4982957
[37] J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H.  Selick, J R. Grove, MDCK (Madin–Darby canine kidney) cells: a tool for membrane permeability screening. Journal of pharmaceutical sciences 88, 28-33 (1999).