با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

1 بخش شیمی تجزیه، دانشکده شیمی، دانشگاه ارومیه، ارومیه، ایران

2 بخش شیمی، دانشکده علوم، دانشگاه گیلان، رشت، ایران

چکیده

در این مطالعه رزین­های کیلیتی به­عنوان مواد مناسبی برای بازیابی منگنز (II) از محلول­های آبی مورد ارزیابی قرار گرفت. این رزین­های اصلاح شده در حضور اشعه ماواربنفش با 1و2-دی آمینو اتان واکنش داد تا یک رزین سه بعدی در مقیاس نانو حاصل شود. رزین مورد استفاده در این کار کوپلیمری از پلی استایرن/مالئیک انیدرید بود که با روش جذب اتمی حذف یون­های منگنز از محلول آبی مورد مطالعه قرار گرفت. روش ساده، حساس، ارزان و سریع می­باشد. رفتار جذبی رزین در  pHهای مختلف ارزیابی شد که نشان داد حتی در  pH های اسیدی نیز حذف یون­های انتخاب شده انجام می­شود. رزین مورد اشاره جهت حذف منگنز از نمونه­های حقیقی نظیر آب فاضلاب­های صنعتی به­کار رفت که نتایج خوبی از حیث کارایی حاصل شد. معادلات سینتیکی نفوذ درون­ذره­ای، شبه مرتبه دوم و شبه مرتبه اول برای شبیه­سازی داده­های جذبی به­کار رفت و نشان داد، داده­ها با رفتار سینتیکی شبه مرتبه دوم مطابقت دارد. مشخصه­یابی رزین با روش­های FT-IR، SEM و XRD انجام شد.

کلیدواژه‌ها

[1] A.B. Robert and D.A. Spiro, Polymersupported reagents for the selective complexation of metal ions: an overview, React. Funct. Polym. 36 (1998) 113-123.
[2] K. Kannan, Fundamentals of Environmental Pollution, S Chand Co. Limited, New Delhi (1995).
[3] H. Bessbousse, T. Rhlalou, J.F. Verche` re and L. Lebrun, Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly (ethyleneimine) in a poly(vinyl alcohol) matrix, J. Membr. Sci. 307 (2008) 249–259.
[4] M.J. Gonza´lez-Mun˜ oz, M.A. Rodrı´guez, S. Luque and J.R.A ´lvarez, Recovery of heavy metals from metal industry wastewaters by chemical precipitation and nanofiltration, Desalination 200 (2006) 742– 744.
[5] R. Kiefer, A.I. Kalinitchev and W.H. Ho¨ ll, Column performance of ion exchange resins with aminophosphonate functional groups for elimination of heavy metals, React. Funct. Polym. 67 (2007) 1421–1432.
[6] C.G. Passos, E.C. Lima, L.T. Arenas, N.M. Simon, B.M. da Cunha, J.L. Brasil, T.M.H. Costa and E.V. Benvenutti, Use of 7-amine4-azahepthylsilica and 10-amine-4 azadecylsilica xerogels as adsorbent for Pb(II). Kinetic and equilibrium study, Colloids Surf. A 316 (2008) 297–306.
[7] O.S. Amuda, A.A. Giwa and I.A. Bello, Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochem. Eng. J. 36 (2007) 174–181.
[8] J. Chen, S. Yiacoumi and T.G. Blaydes, Equilibrium and kinetic study of copper adsorption by activated carbon, Sep. Technol. 6 (1996) 133–146.

 [9] M.M. Johns, W.E. Marshall and C.A. Toles, Agricultural byproducts as granular activated carbons for adsorbing dissolved metals and organics, J. Chem. Technol. Biotechnol. 71 (1998) 131–140.
[10] Y. Sun and P.A. Webley, Preparation of activated carbons from corn cob with large specific surface area by a variety of chemical activators and their application in gas storage, Chem. Eng. J. 162 (2010) 883–892.
[11] W.T. Tsai, C.Y. Chang, S.Y. Wang, C.F. Chang, S.F. Chien and H.F. Sun, Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2, Bioresour. Technol. 78 (2001) 203-208.
[12] A.M.M. Vargas, C.A. Garcia, E.M. Reis, E. Lenzi, W.F. Costa and V.C. Almeida, NaOHactivated carbon from flamboyant(Delonix regia) pods: optimization of preparation conditions using central composite rotatable design, Chem. Eng. J. 162 (2010) 43–50.
[13] K. Gergova and S. Eser, Effects of activation method on the pore structure of activated carbons from apricot stones, Carbon 34 (1996) 879–888.
[14] D. Savova, E. Apak, E. Ekinci, F. Yardım, N. Petrov, T. Budinova, M. Razvigorova and V. Minkova, Biomass conversion to carbon adsorbents and gas, Biomass Bioenergy 21 (2001) 133–142.
[15]  W. Heschel and E. Klose, On the suitability of agricultural byproducts for the manufacture of granular activated carbon, Fuel 74 (1995) 1786–1791.
[16]  I.A.W. Tan, A.L. Ahmad and B.H. Hameed, Optimization of preparation conditions for activated carbons from coconut husk using response surface methodology, Chem. Eng. J. 137 (2008) 462–470.
[17]  H.M. Mozammel, O. Masahiro and S.C. Bahattacharya, Activated charcoal from coconut shell using ZnCl2 activation, Biomass Bioenergy 22 (2002) 397–400.
[18]  Z. Hu, M.P. Srinivasan and N. Yaming, Novel activation process for preparing highly microporous and mesoporous activated carbons, Carbon 39 (2001) 877–886.
[19]  K. Gergova, N. Petrov and S. Eser, Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis, Carbon 32 (1994) 693–702.
[20] M.M. Sabio and F.R. Reinoso, Role of chemical activation in the development of carbon porosity, Colloids Surf. 241 (2004) 15–25.

[21] A. Gurses, C. Dogar, S. Karaca, M. Ackyldz and R. Bayrak, Production of granular activated carbon from waste Rosa canina sp. seeds and its adsorption characteristics for dye, J. Hazard.Mater. 131 (2006) 254–259.
[22]  C. Sudhersan and J. Hussain, In vitro propagation of amultipurpose tree, Ziziphus spina-christi (L.), Desf, Turk. J. Bot. 27 (2003) 167–171.
[23] E. Lev and Z. Amar, Ethnopharmacological survey of traditionaldrugs sold in Israel at the end of 20th century, J. Ethnopharmacol. 72 (2000) 191–205.
[24] A.A. Shahat, L. Pieters, S. Apers, N.M. Nazeit, N.S. Abdel-Azim, D.V. Berghe and A.T. Vlietinck, Chemical and biological investigation on Ziziphus spina-christi L, Phytother. Res. 15 (2001) 593–597.
[25] W. Feng-Chin, T. Ru-Ling and J. Ruey-Shin, Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water, Sep. Purif. Technol. 47 (2005) 10–19.
[26] Z. Hu and M.P. Srinivasan, Preparation of high-surface-areaactivated carbons from coconut shell, Microporous Mesoporous Mater. 27 (1999) 11–18.
[27] S. Braunauer, P. Emmette and E. Teller, Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60 (1938) 309–319.
[28] V. Gomez-Serrano, J. Pastor-Villegas, C.J. Duran-Valle and C.Valenzuela-Calahorro, Heat treatment of rockrose char in air.Effect on surface chemistry and porous texture, Carbon 34 (1996) 533–538.
[29] M.S. Solum, R.J. Pugmire, M. Jagtoyen and F. Derbyshire, Evolution of carbon structure in chemically activated wood, Carbon 33 (1995) 1247–1254.
[30] J. Pastor-Villegas, C. Valenzuela-Calahorro, A. Bernalte-Garcia and V. Gomezserrano, Characterisation study of char and activated carbon prepared from raw and extracted rockrose, Carbon 31 (1993) 1061–1069.
[31]  H.E.S. Amjad, P.N. Alan, K.A.D. Hafid, P. Suki and C. Neil, Characterization of activated carbon prepared from a single cultivar of Jordanian Olive stones by chemical and physicochemical techniques, J. Anal. Appl. Pyrol. 71 (2004) 151–164.
[32]  J.C.P. Vaghetti, E.C. Lima, B. Royer, B.M. da Cunha, N.F.Cardoso, J.L. Brasil and S.L.P. Dias, Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions, J. Hazard. Mater. 162 (2009) 270–280.