با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسندگان

بخش شیمی، دانشکده علوم، دانشگاه یاسوج، یاسوج، ایران

چکیده

یک حسگر نوری بر پایه‌ نشاندن واکنشگر اریوکروم سیانین‌آر به روی غشاء تری استیل سلولز برای اندازه‌گیری یون آلومینیوم (III) طراحی شد. این حسگر نوری دارای پاسخ برگشت‌پذیر و تکرار‌پذیر می‌باشد. در اثر بر همکنش انتخابی اریوکروم سیانین‌آر موجود در غشاء با یون‌ آلومینیوم، رنگ غشاء از صورتی به بنفش در0/6pH=  تغییر می‌کند. درشرایط بهینه، روش دارای پاسخ خطی غلظت یون‌ آلومینیوم (III) از 8-10×22/3 تا 5-10×10/4 مولار و حد تشخیص آن 8-10×2/1 مولار می­باشد. جزئیات محاسبه خطی، حد تشخیص، حساسیت، گزینش­پذیری و زمان پاسخ مورد بحث قرار گرفت. پاسخ حسگر وابسته بهpH بود. پاسخ غشاء به یون آلومینیوم (III) غیر برگشتی و شامل تغییر رنگ از صورتی به آبی بود. غشاء از طریق گذاشتن در محلول 1/0 مولار EDTA در کمتر از 30 ثانیه قابل برگشت برای اندازه­گیری­های بیشتر می­باشد. زمان پاسخ غشاء کمتر از 16 دقیقه بر حسب غلظت آلومینیوم می­باشد. تکرارپذیری و تکثیرپذیری پاسخ غشاء به ترتیب 62/1 و 3 درصد بدست آمد. حسگر پاسخ گزینش­پذیری را نسبت به آلومینیوم (III) در مقابل کاتیون­های دیگر نظیر Zn(II)، Cu(II)، Fe(III)، Ni(II) و Co(II) از خود نشان می­دهد. حسگر برای اندازه­گیری آلومینیوم (III) در آب­های شرب و شربت منیزیم-آلومینیوم استفاده شده است.

کلیدواژه‌ها

 [1] I.M. Steinberg, A. Lobnik and O.S. Wolfbeis, Characterisation of an optical sensor membrane based on the metal ion indicator Pyrocatechol Violet, Sens. Actuators B 90 (2003) 230–235.
[2] P.F. Good, C.W. Olanow and D.P. Perl, Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson's disease: a LAMMA study, Brain Res . 593 (1992) 343-346.
[3] M. Kawahara, K. Muramoto, K. Kobayashi, H. Mori and Y. Kuroda, Aluminum promotes the aggregation of Alzheimer's amyloid betaprotein in vitro, Biochem. Biophys. Res. Commun. 198 (1994) 531-535.
[4] J.L. Lin, M.T. Kou and M.L. Leu, Effect of long-term low-dose aluminum-containing agents on hemoglobin synthesis in patients with chronic renal insufficiency, Nephron 74 (1996) 33-38.
[5] S.R. Paik, J.H. Lee, D.H. Kim, C.S. Chang and J. Kim, Aluminum-induced structural alterations of the precursor of the non-A beta component of Alzheimer's disease amyloid, Arch. Biochem. Biophys. 344 (1997) 325327.
[6] T.P. Flaten, Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water, Brain Res. Bull. 55 (2001) 187-196.
[7] L. Sombra, M. Luconi, M.F. Silva, R.A. Olsina and L. Fernandez, Spectrophotometric determination of trace aluminium content in parenteral solutions by combined cloud point preconcentration-flow injection analysis, Analyst 126 (2001) 1172–1176.
[8] S. Polizzi, E. Pira, M. Ferrara, M. Bugiani, A. Papaleo, R. Albera and S. Palmi, Neurotoxic effects of aluminium among foundry workers and Alzheimer's disease, Neurotoxicology 23 (2002) 761-774.
[9] K. Popinska, J. Kierkuo, M. Lyszkowska, J. Socha, E. Pietraszek, W. Kmiotek and J. Ksiazyk, Aluminum contamination of parenteral nutrition additives, amino acid solutions, and lipid emulsions, Nutrition 15 (1999) 683-686.
[10]  H. Lian, Y. Kang, S. Bi, Y. Arkin, D. Shao, D. Li, Y. Chen, L. Dai, N. Gan and L. Tian, Direct determination of trace aluminum with quercetin by reversed-phase high performance liquid chromatography, Talanta 62 (2004) 43-50.
[11]  G. Albendin, M.P. Manuel-Vez, C. Moreno and M.R. Garcia-Vargas, Reverse flowinjection manifold for spectrofluorimetric determination of aluminum in drinking water, Talanta 60 (2003) 425-431.
[12]  A.L. Balbo, V.C.D. Orto, S. Sobral and I. Rezzano, Linear Scan Stripping Voltammetry
at Glassy-Carbon Based Thin Mercury Film Electrodes for Determination of Trace Aluminium in Dialysis Fluids, Anal. Lett. 31 (1998) 2717-2728.
[13]  A. Safavi and M. Sadeghi, Design and evaluation of a thorium (IV) selective optode, Anal. Chim. Acta 567 (2006) 184–188.
[14]  M. Shamsipur, S. Ershad, A. Yari, H. Sharghi and A.R. Salimi, Hydroxythioxanthones as suitable neutral ionophores for the preparation of PVC-membrane potentiometric sensors for Al(III) ion, Anal. Sci. 20 (2004) 301-306.
[15]  A. Shokrollahi, M. Ghaedi, M.S. Niband and H.R. Rajabi, Selective and sensitive spectrophotometric method for determination of sub-micro-molar amounts of aluminium ion, J. Hazard. Mater 151 (2008) 642–648.
[16]  Z. Ying-Quan, Z. Lin and L. Jun-Yi, Spectrophotometric determination of aluminium with chlorophosphonazo I, Talanta 30 (1983) 291–293.
[17]  M. Chamsaz, M.H. Arbab Zavar and M.S. Hosseini, Flotation Spectrophotometric Determination of Aluminium with Alizarin, Anal. Lett. 33 (2000) 1625-1633.
[18]  U.T. Hill, Direct Photometric Determination of Aluminum in Iron Ores-Corrections, Anal. Chem. 28 (1956) 191-191.
[19]  U.T. Hill, Direct Photometric Determination of Aluminum in Iron Ores, Anal. Chem. 28 (1956) 1419-1424.
[20]  U.T. Hill, Direct Spectrophotometric Determination of Aluminum in Steel, Spelter and Iron Ores, Anal. Chem. 38 (1966) 654656.
[21] W.R. Seitz, Optical Ion Sensing Fiber Optic Chemical Sensors Biosensors II, in: O.S. Wolfbeis (Ed.), CRC Press, Bocaraton, FL, (1991) pp. 1–19. 
[22]  I. Oehme and O.S. Wolfbeis, Optical sensors for determination of heavy metal ions, Microchim. Acta 126 (1997) 177–192.
[23]  M.R. Ganjali, M. Hosseini, M. Hariri, F. Faridbod and P. Norouzi, Novel erbium (III) -selective fluorimetric bulk optode, Sens. Actuators B 142 (2009) 90–96. 
[24]  G. Absalan, M. Asadi, S. Kamran, S. Torabi and L. Sheikhian, Design of a cyanide ion optode based on immobilization of a new Co(III) Schiff base complex on triacetylcellulose membrane using room temperature ionic liquids as modifiers, Sens. Actuators B 147 (2010) 31–36.
[25]  M. Ahmad and R. Narayanaswamy, A flowcell optosensor for monitoring aluminium (III) based on immobilised eriochrome cyanine R (ECR) and reflectance spectrophotometry, Sci. Total Environ. 163 (1995) 221-227.
[26]  S. Abbasi, A. Farmany, M.B. Gholivand, A. Naghipour, F. Abbasi and H. Khani, Kineticspectrophotometry method for determination of ultra trace amounts of aluminum in food samples, Food Chem. 116 (2009) 1019-1023.
[27]  M.M. Bordbar, H. Khajehsharifi and A. Solhjoo, PC-ANN assisted to the determination of Vanadium (IV) ion using an optical sensor based on immobilization of Eriochorome Cyanine R on a triacetylcellulose, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 151 (2015) 225-231.
[28]  M. Ahmad and R. Narayanaswamy, Fibre optic reflectance sensor for the determination of aluminium (III) in aqueous environment, Anal. Chim. Acta 291 (1994) 255-260.
[29]  N. Pourreza and M. Behpour, Column Preconcentration of Aluminum Using Eriochrome Cyanine R and Methyltrioctylammonium Chloride Adsorbent Supported on Naphthalene with Subsequent Spectrophotometric Determination, Microchem. J. 63 (1999) 250–256.
[30]  S. Rastegarzadeh, N. Pourreza and I. Saeedi, An optical chemical sensor for thorium (IV) determination based on thorin, J. Hazared. Mater. 173 (2010) 110–114.
[31]  B. Kuswandi and R. Narayanaswamy, Characterisation of a Hg(II) ion optrode based on Nafion®-1-(2-thiazolylazo)-2naphthol composite thin films, J. Environ. Monit. 1 (1999) 109-114.
[32]  S. Sadeghi and S. Doosti, Uranyl ionselective optical test strip, Dyes Pigments 80 (2009) 125-129.
[33]  M.M.F. Choi, X. Jun Wu and Y. Rong Li, Optode Membrane for Determination of Nicotine via Generation of Its Bromoethane Derivative, Anal. Chem. 71 (1999) 13421349.
[34]  M.K. Amini, T. Momeni-Isfahani, J.H. Khorasani and M. Pourhossein, Development of an optical chemical sensor based on 2-(5Bromo-2-pyridylazo)-5-(diethylamino) phenol in Nafion for determination of nickel ion, Talanta 63 (2004) 713–720.
[35]  M. Ahmad and R. Narayanaswamy, Development of an optical fiber Al (III) sensor based on immobilised chrome azurol S, Talanta 42 (1995) 1337-1344.
[36]  C.T. Driscoll, W.D. Schechler, H. Sigel and A. Sigel, Metal Ions in Biological Systems, 24, Marcel Dekker, New York (1978).
[37]  M. Lerchi, E. Bakker, B. Rusterholz and W. Simon, Lead-selective bulk optodes based on
neutral ionophores with subnanomolar detection limits, Anal. Chem. 65 (1992) 1534–1540.
[38]  M. Lerchi, E. Reitter and W. Simon, Uranyl ion-selective optode based on neutral ionophores, Fresenius' J. Anal. Chem. 348 (1994) 272-276.
[39]  O. Dinten, U.E. Spichiger, N. Chaniotakis, P. Gehrig, B. Rusterholz, W.E. Morf and W. Simon, Lifetime of neutral-carrier-based liquid membranes in aqueous samples and blood and the lipophilicity of membrane components, Anal. Chem. 63 (1991) 596-603.
[40]  F. Abbasitabar, V. Shahabadi, M. Shamsipur and M. Akhond, Development of an optical sensor for determination of zinc by application of PC-ANN, Sens. Actuators B 156 (2011) 181-186.
[41]  M. Wang-bai and Z. Zhu-jun, The Investigation of a Fiber Optical Aluminum Sensor Using Poly (Vinyl Alcohol) Gel as a Substrate, Chem. J Chinese U. 12 (1991) 1304-1307.
[42]  L.A. Saari and W.R. Seltz, Immobilized morin as fluorescence sensor for determination of aluminum (III), Anal. Chem. 55 (1983) 667-670.
[43]  M. Ahmad and R. Narayanaswamy, Optical fibre Al (III) sensor based on solid surface fluorescence measurement, Sens. Actuators B 81 (2002) 259-266.
[44]  K. Carroll, F.V. Bright and G.M, Hieftje, M. Fiber-optic time-resolved fluorescence sensor for the simultaneous determination of aluminum(III) and gallium(III) or indium(III), Anal. Chem. 61 (1989) 17681772.
[45]  S.C. Warren-Smith, S. Heng, H. EbendorffHeidepriem, A.D. Abell and T.M. Monro, Fluorescence-Based Aluminum Ion Sensing Using a Surface-Functionalized Microstructured Optical Fiber, Langmuir 27 (2011) 5680–5685.