با همکاری مشترک انجمن علوم و فناوری‌های شیمیایی ایران

نوع مقاله : مقاله پژوهشی کامل

نویسنده

بخش شیمی، دانشگاه پیام نور، صندوق پستی 3697-19395، تهران، ایران

چکیده

ما نانو­ذراتی از نوع  Fe3O4ترکیب دوتایی آن با مایع یونی 1-اکتیل -3-متیل ایمیدازولیوم برمید را تهیه و شناسایی کردیم و در جذب آلانین، تریپتوفان و تیروزین مورد استفاده قرار گرفت. اندازه ذرات میانگین و مورفولوژی سطح نانو­ذرات با تکنیک­های FTIR، XRD و TEM بررسی شد. pH نقطه بار صفر هردوی نانوذرات و نانوذرات ترکیب­شده با مایع یونی بدست آمد. نتایج آزمایشی تحت شرایط بهینه زیر بدست آمد: مقدار نانوذره 015/0 گرم و زمان های پاسخ 5، 10 و 15 دقیقه به ترتیب برای تریپتوفان، تیروزین و فنیل آلانین در غلظت اولیه 4-10×0/5 مولار از آمینو اسید. ارزیابی­های ایزوترم نشان می­دهد مدل فروندلیج نسبت به مدل دابینین-رادوشکویچ با داده­های تجربی تطابق بیشتری دارد. ماکزیمم ظرفیت جذب برای تریپتوفان، تیروزین و فنیل آلانین عبارتست از: 740/12، 55/3 و 62/35 میلی­گرم بر گرم جاذب. فرآیند جذب گرماگیر می­باشد. هر دو فنیل آلانین و تیروزین امکان واجذب شدنشان از جاذب به وسیله محلول­های 0/1 و 0/2 مولار NaOH وجود دارد. همچنین تریپتوفان بطور کامل در حضور محلولی از NaCl 0/1 مولار و NaOH 0/1 مولار از جادب واجذب می­شود. بنابراین نانودرات قابلیت دوباره استفاده­شدن را دارند.

کلیدواژه‌ها

 [1] J.E. Krohn and M. Tsapatsis, Amino acid adsorption on zeolite, Langmuir 21 (2005) 8743-8750.
[2] A.J. O’Connor, A. Hokura, J.M. Kisler, S. Shimazu, G.W. Stevens and Y. Komatsu, Amino acid adsorption onto mesoporous silica molecular sieves, Sep. Purif. Technol. 48 (2006) 197-201.
[3] F. Sanda and T. Endo, Syntheses of functions polymers based on amino acids, Macromol. Chem. Phys. 200 (1999) 2651-2661.
[4] S.L. Bourke and J. Kohn, Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol), Adv. Drug Delivery Rev. 55 (2003) 447-466.
[5] W. Notz, F. Tanaka and C.F. Barbas, Enamine-Based Organocatalysis with Proline and Diamines:  The Development of Direct Catalytic Asymmetric Aldol, Mannich, Michael, and Diels−Alder Reactions, Acc. Chem. Res. 37 (2004) 580-591.
[6] J. Goscianska, A. Olejnik and R. Pietrzak, Adsorption of L-phenylalanine onto mesoporous silica, Mater. Chem. Phys. 142 (2013) 586-593.
[7] C.C.O. Alves, A.S. Franca and L.S. Oliveira, Removal of phenylalanine from aqueous solutions with thermo-chemically modified corn cobs as adsorbents, LWT - Food Sci. Technol. 51 (2013) 1-8.
[8] M. Ikeda and R. Katsumata, Hyperproduction of tryptophan by Corynebacteriumglutamicum with the modified pentose phosphate pathway, Appl. Environ . Microbiol. 65 (1999) 2497-2502. 
[9] Y.M. Chao and T.M. Liang, A feasibility study of industrial wastewater recovery using electrodialysis reversal, Desalination, 221 (2008) 433-439.
[10] T. Oshima, R. Saisho, K. Ohe, Y. Baba and K. Ohto, Adsorption of amino acid derivatives on calixarene carboxylic acid impregnated resins, React. Funct. Polym. 69 (2009) 105-110.
[11]  G. Absalan, M. Akhond and L. Sheikhian, Partitioning of acidic, basic and neutral amino acids into imidazolium-based ionic liquids, Amino Acids 39 (2010) 167-174.
[12] Y. Wang, C. Shi, Q. Gan and Y. Dai, Separation of amino acids by polymeric reversed micelle extraction, Sep. Purif. Technol. 35 (2004) 1-9.
[13]   Y.  Xie, K.J Jing and Y.  Lu, Kinetics, equilibrium and thermodynamic studies of Ltryptophan adsorption using a cation exchange resin, Chem. Eng. J. 171 (2011) 1227-123.
[14] C. Namasivayam, M. Dineshkumar, K. Selvi, R.A. Begum, T. Vanathi and R.T. Yamuna, 'Waste' coir pith-a potential biomass for the treatment of dyeing wastewaters, Biomass Bioenergy 21 (2001) 477-483.
[15] J. Orthman, H.Y. Zhu and G.Q. Lu, Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions, Sep. Sci. Technol. 31 ( 2003) 53-59.
[16] S.J.T. Pollard, G.D. Fowler, C. J. Sollars and R. Perry, Low-cost adsorbents for waste and wastewater treatment: A review, Sci. Total Environ. 116 (1992) 31-52. 
[17]  J. Qi, L. Zhi, Y. Guo and H. Xu, Adsorption of phenolic compounds on micro- and mesoporous rice husk-based active carbons, Mater. Chem. Phys. 87 (2004) 96-101.
[18]  C. Tizaoui and M.J. Slater, The design of an industrial waste-water treatment process using adsorbed ozone on silica gel, Process Saf. Environ. 81 (2003) 107-113.
[19]  K. Knaebel, For your next separation consider adsorption, Chem. Eng. 102 (1995) 92-100.
[20]  J. Fei-peng, F. Zhao-di, S. Li and C. Xiaoqing, Removal of phenylalanine from water with calcined CuZnAlCO3 layered double hydroxides, Trans. Nonferrous Met. Soc. China 22 (2012) 476-482.
[21] G. Keller, Adsorption: building upon a solid foundation, Chem. Eng. Prog. 91 (1995) 5667.
[22]  G. Absalan and M. Ghaemi, Investigating the parameters affecting the adsorption of amino acids onto AgCl nanoparticles with different surface charges. Amino Acids 43 (2012) 1955-1967.
[23]  Z.Z. Yang, Y.N. Zhao and L.N. He, CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion, RSC Adv. 1 (2011) 545-567.
[24]  G.T. Wei, Z. Yang and C. J. Chen, Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions, Anal. Chim. Acta 488 (2003) 183-192.
[25]  S. Kamran, H. Tavallali and A. Azad, Fast Removal of Reactive Red 141 and Reactive Yellow 81 from Aqueous Solution by Fe3O4 Magnetic Nanoparticles Modified with 1Octyl-3-methylimidazolium bromide, Iran. J. Anal. Chem. 1 (2014) 78-86.
[26]  M.D. Farahani and F. Shemirani,  Supported hydrophobic ionic liquid on magnetic nanoparticles as a new sorbent for separation and preconcentration of lead and cadmium in milk and water samples, Microchim. Acta 179 ( 2012) 219-226. 
[27]  Q. Zhang, F. Yang, F. Tang, K. Zeng, K. Wu, Q. Cai and S. Yao, Ionic liquid-coated Fe3O4 magnetic nanoparticles as an adsorbent of mixed hemimicelles solid-phase extraction for preconcentration of polycyclic aromatic hydrocarbons in environmental samples, Analyst 135 (2010) 2426-2433. 
[28]  D. Long, R. Zhang, W. Qiao, L. Zhang, X. Liang and L. Ling, Biomolecular adsorption behavior on spherical carbon aerogels with various mesopore sizes, J. Colloid Interf. Sci. 331 (2009) 40-46.
[29]  P. Bonhote, A. P. Dias, N. Papageorgion, K. Kalyanasundaran and M. Gratzel, Highly   conductive ambient-temperature molten salts, Inorg. Chem. 35 (1996) 1168-1178.
[30]  D.K. Kim, Y. Zhang, W. Voit, K.V. Rao and M. Muhammed, Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles, J. Magn. Magn. Mater. 225 (2001) 30-36.
[31] G. Absalan, S. Kamran, M. Asadi, L. Sheikhian and M. D. Goltz, Removal of reactive red-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 magnetic nanoparticles using ionic liquid as modifier, J. Hazard. Mater. 192 (2011) 476484 .
[32]  S.I. Park, J.H. Kim, J.H. Lim and C.O. Kim, Surface-modified magnetic nanoparticles with lecithin for applications in biomedicine, Curr. Appl. Phys. 8 (2008) 706-709.
[33]  D. Faivre and P. Zuddas, An integrated approach for determining the origin of magnetite nanoparticles, Earth Planet. Sci. Lett. 243 (2006) 53-60.
[34]  R.D. Waldron, Infrared spectra of ferrites, Phys. Rev. 99 (1955) 1727-1735.
[35]  K. Can, M. Ozmen and M. Ersoz, Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization, Colloids Surf. B Biointerfaces 71 (2009) 154159.
[36]  M.T. Uddin, M.A. Islam, S. Mahmud and M. Rukanuzzaman, Adsorptive of removal of methylene blue by tea waste, J. Hazard. Mater. 164 (2009) 53-60.
[37]  J. Li , X. Zhao, Y. Shi, Y. Cai, S. Mou and G. Jiang , Mixed hemimicelles solid-phase extraction based on cetyltrimethylammonium bromide-coated nano-magnets Fe3O4 for the determination of chlorophenols in environmental water samples coupled with liquid chromatography/spectrophotometry detection, J. Chromat. A 1180 (2008) 24-31.
[38]  X.P. Geng, M.R. Zheng, B.H. Wang, Z.M. Lei and X.D. Geng, Fractions of thermodynamic functions for native lysozyme adsorption onto moderately hydrophobic surface, J. Therm. Anal. Calorim. 93 (2008) 503-508.
[39]  S. Kamran, M. Asadi and G. Absalan, Adsorption of acidic, basic, and neutral proteins from aqueous samples using Fe3O4 magnetic nanoparticles modified with an ionic liquid, Microchim. Acta 108 (2013) 4148.
[40]  G. Limousin, P. Gaudet, L. Charlet, S. Szenknect, V. Barthés and M. Krimissa, Sorption isotherms: A review on physical bases, modeling and measurement, Appl. Geochem. 22 (2007) 249-275. 
[41]  D.A. Uygun, A.A. Karagözler, S. Akgöl and A. Denizli, Magnetic hydrophobic affinity nanobeads for lysozyme separation, Mater. Sci. Eng. C 29 (2009) 2165-2173.
[42]  M. Horsfall, A.I. Spiff and A.A. Abia, Studies on the influence of mercaptoacetic acid (MAA) modification of cassava (Manihot sculenta cranz) waste Biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution, Bull. Korean Chem. Soc. 25 (2004) 969-976.
[43]  S. Ghosh, A.Z. M. Badruddoza, M.S. Uddin and K. Hidajat, Adsorption of chiral aromatic amino acids onto carboxymethyl-βcyclodextrin bonded Fe3O4/SiO2 core-shell nanoparticles, J. Colloid Interf. Sci. 354 (2011) 483-492.
[44]  Y.S. Ho and G. McKay, Pseudo-secondorder model for sorption processes, Process Biochem. 34 (1999) 45-465.
[45]  K.A.G. Gusmãoa, L.V.A. Gurgel, T.M.S. Meloa and L.F. Gil, Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions-Kinetic and equilibrium studies, Dyes Pigm. 92 (2012) 967-974.