In collaboration with Payame Noor University and Iranian Chemical Science and Technologies Association

Document Type : Full research article

Authors

Department of Chemistry, Faculty of Basic Science, Ayatollah Boroujerdi University, Boroujerd, Iran.

Abstract

A simple, new and low-cost design of Li-air battery was introduced. An effective synthesized nanocatalyst for modifiying of air cathode, filter paper as a simple separator and a conductive ionic liquid namely 1-Octyl-3-methyl imidazolium hexafluorophosphate abbreviated [Omim][PF6] as a non-aqueous and green electrolyte in battery were used. The MnFe2O4 nanoparticles (NP-MnFe2O4) which consistingof transition metal-metal oxide components was synthesized in our labrature. High discharge capacity, non-flammability of electrolyte, high reversibility, long lifetime and low over potential were observed in electrochemical tests of the battery. Synthesized nanocatalyst was characterized using XRD, FTIR and SEM techniques. XRD results show that a nanocatalyst have a particle sizes of 16-28 nm that distributed on cathode uniformly and performance of battery was improved to more than 1000 cycles compared to battery without any catalyst. The discharge capacity at current density of 0.2 mA cm-2 and charge potential range of 2.0-4.2 V for battery with catalyst/green electrolyte and without catalyst/common organic electrolyte were 3391 and 1012 mAh g-1,respectively. Furthermore, the usage of an ionic liquid as electrolyte leads to the increase the safety and lifetime of battery. Because of used electrolyte have high boiling point amount (>350 Celcius), so if it released to the environment due to the destruction or life expires of battery, don’t seriously damage to the environment because it is not easily evaporated.   

Keywords

 
[1]        J. Zhang, G. Chen, M. An and P. Wang, Preparation of PtAu catalytic particles on positive electrode of Li/air battery using pulse electroplating, Int. J. Electrochem. Sci. 7 (2012) 11957–11965.
[2]        T. Ogasawara, A. Debart, M. Holzapfel, P. Novak and P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc. 1289 (2006) 1390–1393.
[3]        S.S. Sandhu, J.P. Fellner and G.W. Brutchen, Diffusion-limited model for a lithium/air battery with an organic electrolyte, J. Power Sources 164 (2007) 365-371.
[4]        J.O. Park, M. Kim, J.H. Kim, K.H. Choi, H.C. Lee, W.Choi, S. B. Ma and D. Im, A 1000 Wh kg−1 Li–air battery: Cell design and performance, J. Power Sci. 419 (2019) 112-118.
[5]        P. Tan, H.R. Jiang, X.B. Zhu, L. An, C.Y. Jung, M.C. Wu, L. Shi, W. Shyy and T.S. Zhao, Advances and challenges in lithium-air batteries, Appl. Energy 204 (2017) 780-806.
[6]        P. Tan, W. Shyy, T.S. Zhao, R. H. Zhang and X.B. Zhu, Effects of moist air on the cycling performance of non-aqueous lithium-air batteries, Appl. Energy 182 (2016) 569-575.
[7]        Y.C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan and Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries, Electrochem. Solid-State Lett. 13 (2010) A69–A72.
[8]        Y.C. Lu, D.G. Kwabi, K.P.C. Yao, J.R. Harding, J. Zhou, L. Zuin and Y. Shao-Horn, The discharge rate capability of rechargeable Li–O2 batteries. Energy  Environ. Sci. 4 (2011) 2999–3007.
[9]        Z. Xin-Yue, F. Shao-Hua, Z. Zheng-Xi and Y. Li, Li/LiFePO4 battery performance with a guanidinium-based ionic liquid as the electrolyte, Chinese Sci. Bull. 56 (2011) 2906–2910.
[10]       S.W. Oh, S.T. Myung, S.M. Oh, K.H. Oh, K. Amine, B. Scrosati and Y.K. Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries, Adv. Mater. 22 (2010) 4842-4845.
[11]       K.M. Abraham and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery, J. Electrochem. Soc. 143 (1996) 1–5.
[12]       M. Armand and J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657.
[13]       P.G. Bruce, Energy storage beyond the horizon: Rechargeable lithium batteries, Solid State Ionics 179 (2008) 752–760.
[14]       B.L. Ellis, K.T. Lee and L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chem. Mater. 22 (2010) 691–714.
[15]       G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson and W. Wilcke, Lithium−air battery: Promise and challenges, J. Phys. Chem. Lett. 1 (2010) 2193–2203.
[16]       I. Kowalczk, J. Read and M. Salomon, Li-air batteries: A classic example of limitations owing to solubilities, Pure Appl. Chem. 79 (2007) 851–860.
[17]       R. Padbury and X. Zhang, Lithium–oxygen batteries—Limiting factors that affect performance, J. Power Sources 196 (2011) 4436–4444.
[18]       M.K. Song, S. Park, F.M. Alamgir, J. Cho and M. Liu, Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives, Mater. Sci. Eng. R:Report 72 (2011) 203–252.
[19]       A. Kraytsberg and Y. Ein-Eli, Review on Li–air batteries—opportunities, limitations and perspective, J. Power Sources 196 (2011) 886–893.
[20]       A. Debart, J. Bao and G. Armstrong, An O2 cathode for rechargeable lithium batteries: The effect of a catalyst, J. Power Sources 174 (2007) 1177–1182.
[21]       D. Zhang, Z. Fu, Z. Wei, T. Huang and A. Yu, Polarization of oxygen electrode in rechargeable lithium oxygen batteries, J. Electrochem. Soc. 157 (2010) A362–A365.
[22]       W. Xu, V.V. Vismanathan, D. Wang, S.A. Towne, J. Xiao, Z. Nie, D. Hu and G.J. Zhang, Investigation on the charging process of Li2O2-based air electrodes in Li–O2 batteries with organic carbonate electrolytes. J. Power Sources 196 (2011): 3894–3899.
[23]       D. Aurbach, M. Daroux, P. Faguy and E. Yeager, The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts, J. Electroanal. Chem. Int. Electrochem. Interfacial Electrochem. 297 (1991) 225-244.
[24]       J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough and Y. Shao-Horn, Design principles for oxygen-reduction Activity on perovskite oxide catalysts for fuel cells and metal-air batteries, Nature Chem. 3 (2011) 546-550.
[25]       A. Tegou, S. Papadimitriou, S. Armyanov, E. Valova, G. Kokkinidis and S. Sotiropoulos, Oxygen reduction at platinum-and gold-coated iron, cobalt, nickel and lead deposits on glassy carbon substrates, J. Electroanal. Chem. 623 (2008) 187-196.
[26]       T. Ogasawara, A. Debart, M. Holzapfel, P. Novak and P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc. 128 (2006) 1390-1393
[27]       H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui and H. Dai, Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst, Energy  Environ. Sci. 5 (2012) 7931-7935.
[28]       A. Debart, A.J. Paterson, J. Bao and P.G. Bruce, Alpha-MnO2 nanowires: A catalyst for the O2 electrode in rechargeable lithium batteries, Ang. Int. Ed. Chim. 47 (2008) 4521-4524.
[29]       V. Mazumder, M. Chi, K.L. More and S.J. Sun, Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction, J. Am. Chem. Soc. 132 (2010) 7848-7849.
[30]       M. Hosseini and N. Dalali, Use of ionic liquids for trace analysis of methyl tert-butyl ether in water samples using in situ solvent formation microextraction technique and determination by GC/FID, Sep. Sci. Technol. 49 (2014) 1889–1894.
[31]       M. Hosseini, N. Dalali and S. Moghaddasifar, Ionic liquid for homogeneous liquid−liquid microextraction separation/preconcentration and determination of cobalt in saline Samples, J. Anal. Chem. 69 (2014) 1141–1146.
[32]       M. Hosseini, N. Dalali, S. Mohammad-Nejad and R. Jamali, 1-(2-Hydroxynaphtalene-1-yl)ethane oxime for determination of zinc, J. Braz. Chem. Soc. 23(2012) 78-84.
[33]       M. Hosseini, N. Dalali and S. Mohammad-Nejad, A new mode of homogeneous liquid–liquid microextraction (HLLME) based on ionic liquids: In situ solvent formation microextraction (ISFME) for determination of lead, J. Chinese Chem. Soc. 59 (2012) 872-87.
[34]       G.S. Girishkumar, B. Mccloskey, A.C. Luntz, S. Swanson, W. Wilcke, Lithium−air battery: Promise and challenges, J. Phys. Chem. Lett. 1 (2010) 2193-2203.
[35]       H. Liu and H. Yu, Ionic liquids for electrochemical energy storage devices applications, J. Mater. Sci. Technol. 35 (2019) 674-686.
[36]       H. Chan, L. Jung, O. Park, M. Kim, H. J. Kwon, J.H. Kim, K. H. Choi, K. Kim and D. Im, High-energy-density Li-O2 battery at cell scale with folded cell structure, Joule 3 (2019) 542-556.
[37]       X. Lin, L. Zhou, T. Huang and A. Yu, Cerium oxides as oxygen reduction ctalysts for lithium-air btteries, Int. J. Electrochem. Sci. 7 (2012) 9550-9559.
[38]       T. Kuboki, T. Okuyama, T. Ohsaki and N. Takami,
Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte, J. Power Sources 146 (2005) 766-769.
[39]       C.O. Laoire, S. Mukerjee and K.M.J. Abraham, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery, Phys. Chem. C 114 (2010) 9178-9186.
[40]       P.C. Howlett, D.R. MacFarlane and A.F. Hollenkamp, High lithium metal cycling efficiency a room temperature ionic liquid, Electrochem. Solid State Lett. 7 (2004) A97-A101.
[41]       C.O. Laoire, S. Mukerjee and K.M. Abraham, Elucidating the mechanism of oxygen reduction for lithium-air battery applications, J. Phys. Chem. C 113 (2009) 20127-20134.
[42]       Y. Li, J. Wang, X. Li, D. Geng, M.N. Banis, R. Li and X. Sun, Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries, Electrochem. Commun. 18 (2012) 12-15.
[43]       A. Rahmani, G.R. Karimi, A. Rahmani, M. Hosseini and A. Rahmani, Removal/separation of Co(II) ion from environmental sample solutions by MnFe2O4/bentonite nanocomposite as a magnetic nanomaterial, Desalin. Water Treat. 89 (2017) 250–257.
[44]       M. Gurumoorthy, K. Parasuraman, M. Anbarasu and K. Balamurugan, FT-IR, XRD and SEM study of MnFe2O4 nanoparticles by chemical co-precipitation method, Nano Vision  5 (2015) 63-68