[1] J. Zhang, G. Chen, M. An and P. Wang, Preparation of PtAu catalytic particles on positive electrode of Li/air battery using pulse electroplating, Int. J. Electrochem. Sci. 7 (2012) 11957–11965.
[2] T. Ogasawara, A. Debart, M. Holzapfel, P. Novak and P.G. Bruce, Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc. 1289 (2006) 1390–1393.
[3] S.S. Sandhu, J.P. Fellner and G.W. Brutchen, Diffusion-limited model for a lithium/air battery with an organic electrolyte, J. Power Sources 164 (2007) 365-371.
[7] Y.C. Lu, H.A. Gasteiger, M.C. Parent, V. Chiloyan and Y. Shao-Horn, The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries, Electrochem. Solid-State Lett. 13 (2010) A69–A72.
[8] Y.C. Lu, D.G. Kwabi, K.P.C. Yao, J.R. Harding, J. Zhou, L. Zuin and Y. Shao-Horn, The discharge rate capability of rechargeable Li–O2 batteries. Energy Environ. Sci. 4 (2011) 2999–3007.
[9] Z. Xin-Yue, F. Shao-Hua, Z. Zheng-Xi and Y. Li, Li/LiFePO4 battery performance with a guanidinium-based ionic liquid as the electrolyte, Chinese Sci. Bull. 56 (2011) 2906–2910.
[10] S.W. Oh, S.T. Myung, S.M. Oh, K.H. Oh, K. Amine, B. Scrosati and Y.K. Sun, Double carbon coating of LiFePO4 as high rate electrode for rechargeable lithium batteries, Adv. Mater. 22 (2010) 4842-4845.
[11] K.M. Abraham and Z. Jiang, A polymer electrolyte-based rechargeable lithium/oxygen battery, J. Electrochem. Soc. 143 (1996) 1–5.
[12] M. Armand and J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657.
[13] P.G. Bruce, Energy storage beyond the horizon: Rechargeable lithium batteries, Solid State Ionics 179 (2008) 752–760.
[16] I. Kowalczk, J. Read and M. Salomon, Li-air batteries: A classic example of limitations owing to solubilities, Pure Appl. Chem. 79 (2007) 851–860.
[20] A. Debart, J. Bao and G. Armstrong, An O2 cathode for rechargeable lithium batteries: The effect of a catalyst, J. Power Sources 174 (2007) 1177–1182.
[21] D. Zhang, Z. Fu, Z. Wei, T.
Huang and A.
Yu, Polarization of oxygen electrode in rechargeable lithium oxygen batteries,
J. Electrochem. Soc. 157 (2010) A362–A365.
[24] J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough and Y. Shao-Horn, Design principles for oxygen-reduction Activity on perovskite oxide catalysts for fuel cells and metal-air batteries, Nature Chem. 3 (2011) 546-550.
[25] A. Tegou, S. Papadimitriou, S. Armyanov, E. Valova, G. Kokkinidis and S. Sotiropoulos, Oxygen reduction at platinum-and gold-coated iron, cobalt, nickel and lead deposits on glassy carbon substrates, J. Electroanal. Chem. 623 (2008) 187-196.
[27] H. Wang, Y. Yang, Y. Liang, G. Zheng, Y. Li, Y. Cui and H. Dai, Rechargeable Li–O2 batteries with a covalently coupled MnCo2O4–graphene hybrid as an oxygen cathode catalyst, Energy Environ. Sci. 5 (2012) 7931-7935.
[28] A. Debart, A.J. Paterson, J. Bao and P.G. Bruce
, Alpha-MnO
2 nanowires: A catalyst for the O
2 electrode in rechargeable lithium batteries,
Ang. Int. Ed. Chim. 47 (2008) 4521-4524.
[29] V.
Mazumder, M.
Chi, K.L.
More and
S.J.
Sun, Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction,
J. Am. Chem. Soc. 132 (2010) 7848-7849.
[30] M. Hosseini and N. Dalali, Use of ionic liquids for trace analysis of methyl tert-butyl ether in water samples using in situ solvent formation microextraction technique and determination by GC/FID, Sep. Sci. Technol. 49 (2014) 1889–1894.
[31] M. Hosseini, N. Dalali and S. Moghaddasifar, Ionic liquid for homogeneous liquid−liquid microextraction separation/preconcentration and determination of cobalt in saline Samples, J. Anal. Chem. 69 (2014) 1141–1146.
[32] M. Hosseini, N. Dalali, S. Mohammad-Nejad and R. Jamali, 1-(2-Hydroxynaphtalene-1-yl)ethane oxime for determination of zinc, J. Braz. Chem. Soc. 23(2012) 78-84.
[33] M. Hosseini, N. Dalali and S. Mohammad-Nejad, A new mode of homogeneous liquid–liquid microextraction (HLLME) based on ionic liquids: In situ solvent formation microextraction (ISFME) for determination of lead, J. Chinese Chem. Soc. 59 (2012) 872-87.
[35] H. Liu and H. Yu, Ionic liquids for electrochemical energy storage devices applications, J. Mater. Sci. Technol. 35 (2019) 674-686.
[38] T. Kuboki, T. Okuyama, T. Ohsaki and N. Takami,
Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte, J. Power Sources 146 (2005) 766-769.
[40] P.C. Howlett, D.R. MacFarlane and A.F. Hollenkamp, High lithium metal cycling efficiency a room temperature ionic liquid, Electrochem. Solid State Lett. 7 (2004) A97-A101.
[42] Y. Li, J. Wang, X. Li, D. Geng, M.N. Banis, R. Li and X. Sun, Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries, Electrochem. Commun. 18 (2012) 12-15.
[43] A. Rahmani, G.R. Karimi, A. Rahmani, M. Hosseini and A. Rahmani, Removal/separation of Co(II) ion from environmental sample solutions by MnFe2O4/bentonite nanocomposite as a magnetic nanomaterial, Desalin. Water Treat. 89 (2017) 250–257.
[44] M. Gurumoorthy, K. Parasuraman, M. Anbarasu and K. Balamurugan, FT-IR, XRD and SEM study of MnFe2O4 nanoparticles by chemical co-precipitation method, Nano Vision 5 (2015) 63-68